COURSE SYLLABUS BIONANOTECHNOLOGIES

Academic year- 2025-2026

1. Data about the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Biology and Geology
1.3 Department	Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	2 years, Full Time
1.6 Study Programme /	Master/ Molecular Biotechnology
Qualification	
1.7 Form of education	Full -Time

2. Course data

2.1 Name of discipling	ne	BIONANO	BIONANOTECHNOLOGIES (in English)			Discipline Code	BME1201
2.2 Teacher responsible for lectures			Pr	ofesor dr. Manuela Banci	u		
2.3 Teacher responsible for seminars			Pr	ofesor dr. Manuela Banci	u		
2.4 Year of study	1	2.5 Semester	2	2.6. Type of evaluation	Е	2.7 Course framework	DSIN

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars / Laboratory	2	
		Lectures		classes		
3.4 Total hours in the curriculum	126	Out of which: 3.5	28	3.6 Seminars / Laboratory	28	
		Lectures		classes		
Allocation of study time:						
Study supported by textbooks, other course materials, recommended bibliography and personal student						
notes						
Additional learning activities in the library, on specialized online platforms and in the field						
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays					20	
Tutoring					8	
Examinations						
Other activities:						

3.7 Individual study (total hours)	70
3.8 Total hours per semester	126
3.9 Number of credits	5

4. Preconditions (where applicable)

4.1 Curriculum	Biochemistry, Cell and Molecular Biology, Genetics.
4.2 Competences	Interpretation of scientific information

5. Conditions (where applicable)

5.1 Conducting lectures	MS teams platform
	Audio-video logistics
5.2 Conducting seminars /	 Admission at final evaluation is conditioned by at least 80% attendances at
laboratory classes	the scheduled laboratory classes.

6. Specific competences acquired

Professional competences	 The student achieves analytical and synthesis skills in Biotechnologies, Nanotechnologies, Molecular Biology, Genetic Engineering, and Nanomedicine. The student achieves analytical and synthesis skills of scientific information presented in Englsh.
Transversal competences	 Acquisition of basic theoretical knowledge for future doctoral research in the field of Bionanotechnologies, Genetic Engineering, Nanomedicine, Molecular Biotechnologies. Dezvoltarea capacităților de a lucra independent cat si in echipa.

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	 Acquiring general knowledge about the importance of the bionanotechnologies in applicative research.
7.2 Specific objectives	 Acquiring theoretical knowledge about the practical application of biomaterials. Acquiring theoretical knowledge about challenges of the bionanomachines in tight connection with biological barriers. Acquiring theoretical knowledge about the practical application of the bionanosensors.

8. Content

8.1 Lectures	Teaching methods	Observations
1. Introduction to Nanotechnology and, respectively, Bionanotechnology. Brief history, interdisciplinarity, Nanomedicine.	Debate, interactive presentationbased on critical thinking.	2 hours
2. Applications of Bionanotechnologies: biomaterials, bionanosystems, bionanosensors, etc.	Debate, interactive presentationbased on critical thinking.	2 hours
3-4. Biomaterials: applications in Nanomedicine, Environmental Quality Monitoring, food industry, etc.	Debate, interactive presentation based on critical thinking.	4 hours
5-6. Bionanosystems: applications in targeted therapy and imaging	Debate, interactive presentationbased on critical thinking.	4 hours
7. Modern techniques for obtaining and optimizing bionanosystems for biomedical applications.	Debate, interactive presentationbased on critical thinking.	2 hours
8. Artificial viruses: methods of obtaining, advantages and disadvantages.	Debate, interactive presentationbased on critical thinking.	2 hours
9-10. Bionanosensors: structure, biological recognition processes, types.	Debate, interactive presentationbased on critical thinking.	3 hours
10-11. Bionanosensors for biomedical applications	Debate, interactive presentationbased on critical thinking.	3 hours

12. Bionanosensors used to monitor air and water quality	Debate, interactive presentationbased on critical thinking.	2 hours	
13. Molecular bionanosensors	Debate, interactive presentationbased on critical thinking.	2 hours	
14. Biomaterials used in tissue engineering	Debate, interactive presentationbased on critical thinking.	2 hours	
Bibliografie Scientific articles from public databases (PubMed Central, S University Library of Cluj-Napoca, Anelis	pringerLink ,etc.) accessed	d via "LUCIA	AN BLAGA" Central
8.2 Seminars / laboratory classes	Teaching methods		Observations
Seminars – problem-based learning: identification and optimization of bionanosystems with applications in targeted therapies	Seminars – problem-based	d learning	12 hours
Seminasr - presentation of reports/projects that address research in the field of Bionanotechnologies - presentations in English	Seminars based on critical	thinking	16 hours
Bibliografie			

Scientific articles from public databases (PubMed Central, SpringerLink ,etc.) accessed via "LUCIAN BLAGA" Central University Library of Cluj-Napoca, Anelis

9. Aligning the contents of the discipline with the expectations of the epistemic communityrepresentatives, professional associations and standard employers operating in the program field

- The course has a similar content to courses from other European universities
- The course is essential for the development of analytical and synthesis skills in Bionanotechnologies, Nanotechnologies, Molecular Biology, Genetic Engineering, and Nanomedicine.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Lectures	Assessment of knowledge	Exam-presentation of a project in the the field of Bionanotechnologies	50 %
10.5 Seminars/laboratory classes	Activity during seminars	Evaluation during the seminars	50 %
10 (M; ;)	Assessment of knowledge		

10.6 Minimum performance standard

- Knowledge of 50% of the information content of the course
- Involvement in at least 50% of the seminars activities.

11. Sustainable Development Goals)¹

Eticheta generală pentru Dezvoltare durabilă							
	3 SANATATE ST BUNASTARE	4 EDUCATIE DE CALITATE					

Date of issue 9.01.2025

Signature of the teacher responsible for lectures Prof. dr. Manuela Banciu

Signature of the teacher responsible for seminars/laboratory classess Prof. dr. Manuela Banciu

Date of approval in the department 10.01.2025

Signature of the Head of the Department Conf. Dr. Beatrice Kelemen

¹ Păstrați doar etichetele care, în conformitate cu <u>Procedura de aplicare a etichetelor ODD în procesul academic</u>, se potrivesc disciplinei și ștergeți-le pe celelalte, inclusiv eticheta generală pentru <u>Dezvoltare durabilă</u> - dacă nu se aplică. Dacă nicio etichetă nu descrie disciplina, ștergeți-le pe toate și scrieți "Nu se aplică.".