SYLLABUS

1. Information regarding the program				
1.1 Higher education	"Babeş-Bolyai" University Cluj-Napoca			
institution				
1.2 Faculty	Faculty of Biology and Geology			
1.3 Department	Biology and Ecology Department of Hungarian Line			
1.4 Field of study	Biology			
1.5 Study cycle	2 years, with frequency			
1.6 Study programme /	Medical Biology/Master of Medical Biology			
Qualification				

1. Information regarding the program

2. Information regarding the discipline

2.1 Name of the discipline BME6203 Medical Molecular Biology (in English)						
2.2 Course coordinator dr. Jakab Endre, assistant professor						
2.3 Seminar coordinator dr. Jakab Endre, assistant professor						
2.4. Year of study I. 2.5 Se	mester	2.	2.6. Type of evaluation	E	2.7 Type of discipline	Ob.

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 cours	e 2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	154	Of which: 3.5 cours	e 28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course suppo	ort, bib	oliography, course not	es		40
Additional documentation (in libraries, on electronic platforms, field documentation)				30	
Preparation for seminars/labs, homework, papers, portfolios and essays				24	
Tutorship				2	
Evaluations				2	
Other activities:				0	
3.7 Total individual study hours		98			
3.8 Total hours per semester 154					

3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	Course room with laptop, with video projector and with necessary software (Power Point, Word), multimedia appliances, Internet.
5.2. for the seminar /lab activities	Laboratory room - mounted properly: laboratory apparatus and materials (centrifuges, thermostat, electrophoretic apparatus, spectrophotometer, thermocycler), or online, according to the legislation in force. The laboratory equipment and material are ensured for use by the Faculty of Biology and Geology.

6. Specific competencies acquired

Professional competencies	• Cognition, understanding and acquirement of the advanced concepts, theories and methods of biology as well as the adequate use of them in the professional communication.
Transversal competencies	 Ability of working in groups of life sciences researchers, ability of resolving problems and making decisions, organization of activities in a group.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• The course follows the concepts, principles and methods of molecular biology while familiarizing the students with the use of these in clinical laboratories
7.2 Specific objective of the discipline	 Development of the capacity to understand the principles of the methods used in molecular biology laboratories and the currently used technologies of molecular diagnostics. Formation of the ability of using the molecular biology technologies applied in clinic and diagnostic laboratories

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction into the Molecular Biology. Definition. Basic Concepts. The Brief History of the Molecular Biology. The Structure and Functions of the Nucleic Acids. (1: 1-48, 2: 51-73, 4: 1-12, 23-37) 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 Isolation and Purification of Nucleic Acids. Isolation of DNA and RNA. Organic and Inorganic Isolation Methods. Solid Phase Extraction. Determination of the Purity and Concentration of the Nucleic Acids. Electrophoresis. Spectrophotometry. Fluorometry. (2: 567-570, 4: 69-86) 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 Separation of Nucleic Acids with Electrophoresis. Pulsed Field Gel Electrophoresis (PFGE). Polyacrylamide Gel Electrophoresis. Capillary Gel Electrophoresis. Buffer Systems. Nucleic Acid Dyes. (2: 570-574, 582-588, 4: 87- 101). 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 Nucleic Acid Modifying Enzymes. Nucleases. Secondary Modifying Enzymes. Ligases. Restriction Endonucleases. Polymerases. Tertiary Modifying Enzymes. 	 Interactive exposure Explanation Conversation Didactical 	2 hours

(1, 50, 74, 2, 600, 610)	1	
 (1: 50-74, 2: 600-610). Molecular Cloning of the DNA. Creating of Recombinant DNA. Cloning, Transcription and Expression Vectors. Amplification of the Recombinant DNA. (1: 50-74, 2: 610-631) Nucleic Acid and Proteine Hybridization Technologies. Southern Blot. Northern Blot. Western Blot. Eastern Blot. Nucleic Acid Probes. Protein Probes. Classical and Modern Detection Methods. Interpretation of the Results. (1: 50-74, 2: 590-595, 4:102-122). 	 demonstration Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration 	2 hours 2 hours
 Modern Hybridization Methods. Dot/Slot – Blot. Macroarray and Microarray Technologies. DNA Chip. Karyotyping. Fluorescence in situ Hybridization (FISH). Interphase and Metaphase FISH. (2: 595- 598, 709-716, 4:122-127,175-183) 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 DNA Amplification Technologies. Polymerase Chain Reaction (PCR). Simple PCR Technology. Components of a Typical PCR Reaction. PCR Programs. Primers. Thermocyclers. PCR Modifications: multiplex-PCR, reverse transcriptase PCR, nested PCR, real time PCR. (2: 634-661, 4: 130-151). 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 Classical and Modern DNA Sequencing Methods. Direct Sequencing: Maxam- Gilbert and Sanger Methods. Pyrosequencing. Bisulfite Sequencing. Emulsion and Bridge PCR. Next Generation Sequencing. NGS Systems. (1:50-74, 2: 662-680, 686-690, 4:222-238). 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 Genomics and Proteomics. Basic Concepts. Genome Projects. Human Genome Project. Clinic Genome and Exome Sequencing. Human Proteome Project. Omics. (1: 759- 826, 2: 680-686, 690-693, 4:240-244). 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 Isolation and Purification of Proteins. Identification and Sequencing of Proteins. (2: 717-744). 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours
 Molecular Diagnostics in Human Identification, Genetics and Oncology. Single- nucleotide Mutations (SNP). Polynucleotide Polymorphisms. RFLP Technology. STR Typing by PCR. FBI CODIS Database. Epigenetic Alterations. Single-gene Diseases: Leiden Mutation, Hemochromatosis, Cystic Fibrosis. Molecular Oncology. EGFR, K-ras, BRCA1 and BRCA2 (1: 759-826, 493- 	 Interactive exposure Explanation Conversation Didactical demonstration 	2 hours

498, 4:249-255, 342-355).		
 Molecular Diagnostics in Bacteriology and Virusology. The Importance of Molecular Diagnostics of the Microorganisms. Sampling and Preparation of Samples. Control Processes and Quality Assurance. Melting Point. Infection Diagnostics in the Respiratory and Urinary tracts. (1: 759- 826, 4:289-305) 	 Interactive exposure Conversation Explanation Didactical demonstration 	2 hours
 Gene Therapy. Gene Attenuation and Knock-out Technologies. (1: 759-826). 	 Interactive exposure Conversation Explanation Didactical demonstration 	2 hours

Bibliography

Obligatory bibliography:

1. Weaver, R. F.: Molecular biology, McGraw-Hill, New York, 2012 – Zoological Library, code: 18399

2. Clark, D. P.: Molecular biology, Elsevier Academic Press, New York, 2005 – Animal Physiology Library, code: 1391, Zoological Library, code: 17878

3. Sambrook, J.: Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Plainview, 1989 – Zoological Library, code: 16255

4. Buckingham, L.: Molecular Diagnostics: Fundamentals, Methods and Clinical Applications, F.A. Davis Company, Philadelphia, 2012 – Animal Physiology Library, code:1542

Optional bibliography:

1. McPherson, R. A., Pincus, M. R.: Henry's clinical diagnosis and management by laboratory methods, Elsevier Saunders, Philadelphia, 2011 – Animal Physiology Library, code: 1580

2. Weaver, R. F., Hedrick, Ph. W.: Genetika, Panem, Budapest, 2000 – Zoological Library, code: 17084.

8.2 Seminar / laboratory	Teaching methods	Remarks
Molecular Biology Laboratory Organization. Work	Interactive exposure.	2 hours
Protection Rules and Risk Management. 1: A1.1; 2: 1).	Conversation.	
Isolation and Purification of DNA from Clinic Probes.	Interactive exposure.	8 hours
Determination of DNA Concentration and Purity (1:	Explanation	
5.1, 6.1; 2: 2, 3).	Conversation.	
	Experimental	
	Demonstration.	
DNA Amplification Methods. PCR. Separation of	Interactive exposure.	8 hours
DNA Fragments Using Gel electrophoresis (1: 5.1; 2:	Explanation	
4,5).	Conversation.	
1,07.	Experimental	
	Demonstration.	
Oligonucleotide Primer Design (2: 6).	Interactive exposure.	2 hours
	Explanation	
	Conversation.	
	Experimental	

	Demonstration.	
Analysis of DNA Sequences. Visualization,	Interactive exposure.	2 hours
Assembling and Identification of DNA fragments. (1:	Explanation	
A11.1; 2: 7).	Conversation.	
	Experimental	
	Demonstration.	
Molecular diagnostics Seminary I.	Interactive exposure.	2 hours
	Explanation	
	Conversation.	
Molecular diagnostics Seminary II.	Interactive exposure.	2 hours
	Explanation	
	Conversation.	
Make up session/Review session.	Interactive exposure.	2 hours
	Explanation	
	Conversation.	
Dibliggrouphy		

Bibliography

- 1. Sambrook, J.: Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Plainview, 1989 Zoological Library, code: 16255
- 2. Jakab, E.: Medical Molecular Biology Laboratory Practices, 2019

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is in accordance with the contents thought in other Romanian universities and in foreign countries.

10. Evaluation

Activity type	Evaluation criteria	Evaluation Methods	Portion in the final
			note
Course	Verification of the	Written exam at the end of	80%
	theoretical knowledge	the semester	
Seminar/Laboratory	Verification of the	Written exam at the end of	10%
-	practical knowledge	the semester	
	Evaluation of the	Evaluation of the	10%
	presentations	presentations during the	
	-	seminary sessions.	
Minimal standard of the	performance		
• Cognition of the basi	c concepts and principles, the	minimal note is 5.	

Date	Signature of course coordinator	Signature of seminar coordinator
July 11, 2024	JAKAB Endre, PhD	JAKAB Endre, PhD
	Assistant Professor	Assistant Professor
Date of approval	Signature of the head of department	
July 23, 2024	KERESZTES Lujza, PhD	

Associated Professor