DETAILED SYLLABUS

1. Information about the study program

<u>1. mormation about the study progra</u>	ann
1.1 University	Universitatea Babes-Bolyai
1.2 Faculty	Biology and Geology
1.3 Department	Taxonomy and Ecology
1.4 Field of study	Biology
1.5 Program level (bachelor or master)	Master, 4 semesters, regular physical presence learning
1.6 Study program / Qualification	Systems Ecology and Conservation/ MSc

2. Information about the subject

2.1 Subject titl	e			PRINCIPILES	5 OF SYSTEM	S ECOLOGY,	BME3101
2.2 Course acti	vities	professor		Lecturer dr. C	ristina Craiov	eanu	
2.3 Seminar ac	tivitie	es professor		Lecturer dr. (Cristina Craiov	eanu	
2.4 Year of	1	2.5	1	2.6 Type of	C	2.7 Subject	Compulsory
study	1	Semester	1	assessment	C	regime	Compulsory

3. Total estimated time (teaching hours per semester)

3.1 Number of hours per week	2	out of wh	ich: 3.2	1	3.3	1
		course			seminar/laboratory	
3.4 Total number of hours in the	126	out of wh	ich: 3.5	14	3.6	14
curriculum		course			seminar/laboratory	
Time distribution						Hours
Study based on textbook, course support, references and notes					20	
Additional documentation in the library, through specialized databases and field activities					30	
Preparing seminars/laboratories, essays, portfolios and reports					40	
Tutoring					4	
Assessment (examinations)					4	
Others activities field trips					-	
3.7 Total hours for individual study		98				
3.8 Total hours per semester		126				

5

3.9 Number of credits

4. Preconditions (if necessary)

4.1 Curriculum	Graduation of general biology (botany and zoology), ecology and biostatistics courses
4.2 Skills	• Capacity to use a PC with the programs Microsoft Excel and Word or equivalent

5. Conditions (if necessary)

5.1. For course development	Logistic support (digital video-projector)/ online platforms: Teams, Zoom
5.2. For seminar / laboratory	Logistic support: multimedia projector
development	Compulsory attendance of students at minim 80% of the seminars

6. Acquired specific competences

Professional	Knowledge:
competences	(1) Knowledge, understanding and specific language: students will be introduced to the concept of systems ecology. They will revisit and deepen the knowedge of specific terms from connected fields (Ecosystem: structure and function; hydrobiology, conservation biology etc.) studied at Bachelor level.
	(2) <u>Explanation and interpretation</u> : Students will be able to explain the principles underpinning the systemic classification of living structures based on the course material. Through the techniques explained and discussed at the seminar they will be able to interpret general principles and scientific information in the field of ecology and will be able to formulate them in specialized scientific essays.
	Skills:
	 (3) <u>Application, transfer and problem solving:</u> At the planned practical works, students will analyze data and interpret results obtained in ecosystem and population ecology studies
	(4) <u>Critical and constructive reflection:</u> students are encouraged to discuss the problems presented at the course and to formulate their own conclusions and solutions, and to formulate in writing, through an individual paper, the opinion on certain topics discussed
	at the seminar. (5) <u>Creativity and Innovation</u> : Creativity in this field materializes in students' ability to find solutions to specific problems, based on the theoretical and practical information
	received in this discipline. Within this discipline, students will be able to document
	ecosystem and population ecology studies and practice the restoration of estimates. As a result of these exercises, students will be asked to express a critical view on the
	effectiveness of the method and any improvements that may be made. (6) <u>Developing a scientific essay:</u> By combining the abilities mentioned above, students will develop the ability to write a scientific essay based on clearly explained and clearly formulated requirements.
Transversal	(7) <u>Autonomy and Responsibility</u> : Students will be able to assume responsibility for the
competences	interpretation of scientific data specific to the field, based on the theoretical knowledge gained during the course and seminar discussions. In exercises based on the study of literature in the field, students will practice the individual study, taking responsibility for communicating their own conclusions to colleagues. Also by peer evaluation they will develop their ability to evaluate and self-assess and to be able to justify their decisions. (8) <u>Social interaction</u> : analyzing data on working groups and peer reviews will lead to the development of team spirit and effective and diplomatic communication. The course also aims to improve students' oral communication skills through discussions on the issues presented.
	(9) <u>Personal and Professional Development</u> : By developing critical thinking, logical and argumentative thinking, students will be able to develop a reference system in analyzing environmental issues. They will think independently and will know how to draw their own conclusions according to the experience gained from the bachelor level. Through this exercise they will self-assess their capacity to understand environmental science issues and gain more confidence in their own analytical capability.

7. Subject objectives (arising from the acquired specific competences)

7.1 Subject's general objective	• Study of the principles that form the basis of the systemic ordering of the living world
7.2 Specific objectives	 General principles of systemic theory Important theories at different levels of organizing the living world Expressing the principles by which the living world is organized at different levels into mathematical models Analyzing and explaining a theory by making a scientific essay Peer evaluation and self-evaluation of the scientific essay

8.1 Course	Teaching methods	Observations
Courses 1-2: Systems theory : Terms, characteristics of	Lecture,	All lectures and
biological systems; Organizational hierarchies	dialogue,	seminars can be
ereregieur systems, organizational meraremes	interrogation, use of	held online if the
	PPT, films	pandemic
Course 3: Evolution of supra-individual biological systems:	Lecture,	situation impose
evolution, organizational and taxonomic classifications,	dialogue,	restrictions. The
origin of eukaryotes, origins of pluricelularity, origin of	interrogation, use of	platform used in
sexual process, emerging traits	PPT, films	this situation wi
Course 4: Intraspecific interactions : sexual selection, natural	Lecture,	be Microsoft
selection, reproductive strategies, intraspecific	dialogue,	Teams.
	U	r cams.
relationships	interrogation, use of	
	PPT, films	_
Course 5: Sociality : social and intra-and inter-specific social	Lecture,	
and communication systems, beneficial characters at	dialogue,	
individual and population level	interrogation, use of	
	PPT, films	_
Courses 6-7: The evolution of populations: intraspecific	Lecture,	
interactions, specific methods for studying populations,	dialogue,	
density dependence, growth regulation, exponential and	interrogation, use of	
logistical growth, demographics	PPT, films	
Courses 8-9: Evolution of ecosystems: ecological succession,	Lecture,	
biodiversity, speciation, coevolution, intermediate	dialogue,	
disturbance hypothesis, interspecific relations, transect	interrogation, use of	
method, square method, parameters used in ecosystem	PPT, films	
analysis		
Course 10: Ecological niche: spatial niche, functional niche,	Lecture,	
competitive exclusion principle, "hipervolume" niche,	dialogue,	
fundamental niche vs. realized niche, the niche term in the	interrogation, use of	
present conception, other theories / concepts about the	PPT, films	
ecological niche		
Course 11-13: Biom and Biosphere: evolution at higher	Lecture,	
levels of organization, global interactions theories,	dialogue,	
globalization and global warming, elements of	interrogation, use of	
astrobiology	PPT, films	
Course 14: Consultations : discussions on the themes of the	Lecture,	
course, how scientific essays are drafted, the bachelor	dialogue,	
thesis / dissertation in ecology, etc.	interrogation, use of	
	PPT, films	
References:	,	
1) Pásztor, L., Botta-Dukát, Z., Magyar, G., Czárán, T., Mes	zéna, G., 2016. Theory-	Based Ecology: A
Darwinian Approach, Oxford University press, 301 pp.	2010, 2010, 11001y	2
 Ovaskainen, O., de Knegt, H.J., del Mar Delgado, M., 201 	16 Quantitative Ecology	v and Evolutionary
Biology, Oxford University press, 285 pp.	ro, Quantiaurite Leology	, and Lyonational y
 Begon, M., Townsend, C.R., Harper, J.L., 2006, Ecology, 	from individuals to eco	systems $(4^{\text{th}} \text{ Ed})$
Blackwell Publishing, Malden, 1-738	nom marviauais to eco	5ystems, (+ Ed.),
4) Determine N 1000 Evolutio sistemalar historia suproj	adividuala Edit Llaine	

- Botnariuc, N., 1999, Evoluția sistemelor biologice supraindividuale, Edit. Universității din București, București
- 5) Botnariuc, N., Vădineanu, A., 1982, Ecologie, Edit. Didact. și Pedag., București
- 6) Meffe, G.K., Carroll C.R. and contributors, 1997, Principles of Conservation Biology, (2nd Ed.), Sinauer Associates Inc. Publishers, Sunderland, Massachusetts

8.2 Seminar / laboratory	Teaching methods	Observations
1. Debate on organisation of living systems: organizational	Lecture,	All lectures and
hierarchy vs. taxonomic hierarchy	dialogue,	seminars can be

	interrogation use of PPT, assignments, games	held online if the pandemic situation imposes
2. Watching and discussing "Charles Darwin and the Tree of Life"	Lecture, dialogue, interrogation use of PPT, assignments, games	restrictions. The platform used in this situation will be Microsoft Teams.
3. Watching documentary films on the evolution of pluricelularity, eukaryotes, sexual reproduction, and discussing arguments	Lecture, dialogue, interrogation use of PPT, assignments, games	
4. Methods of analysis of intraspecific relations and their quantification. Interpretation of results.	Fieldwork, practice/ online - role-playing	
5. Methods of analysis in studies of social organisms and interpretation of data.	Lecture, dialogue, interrogation use of PPT, assignments, games	
6. The square method and mark-recapture method in population analysis. Presumptions of mathematical models of population estimation. Interpretation of population data.	Lecture, dialogue, interrogation use of PPT, assignments, games	
7. Population density estimation: transect method: suitable populations, calculation mode, interpretation	Lecture, dialogue, interrogation use of PPT, assignments, games	
8 9. Ecological succession studies, estimation of diversity, indices of diversity and equitability, similarities of biotic communities. Analyzing a data set and interpreting and discussing the results.	Lecture, dialogue, interrogation use of PPT, assignments, games	
10-11. Ecological niche modelling. Programs, techniques and methods for mathematical niche modelling. Critical analysis of several studies.	use of PPT, practice on PC with specific programs	
12. Methods of theoretical ecology in modeling of ecosystems and biomes.	Lecture, dialogue,	
13. Recap and possibility for a recovery session.	interrogation use of PPT, assignments, games	
14. Colocviu	-	
<u>References</u> :		

- 1) Ovaskainen, O., de Knegt, H.J., del Mar Delgado, M., 2016, Quantitative Ecology and Evolutionary Biology, Oxford University press, 285 pp.
- 2) Battes, K.P., 2012, Ecologie generală, ghid de lucrări practice, Presa Universitară Clujeană, Cluj-Napoca, 1-152
- 3) Henderson, P.A., 2003, Practical methods in ecology, Blackwell Publishing, 1-163
- 4) Krebs, C.J., 1999, Ecological Methodology, Wesley Longman Inc.
- 5) Rîşnoveanu, G. (ed.), 2010, Caracterizarea sistemelor populaționale, Ars Docendi, Universitatea din București, 1-392
- 6) Van Emden, H.F., 2008, Statistics for terrified biologists, Blackwell Publishing, 1-343

9. Corroboration / validation of the subject's content in relation to the expectations coming from representatives of the epistemic community, of the professional associations and of the representative employers in the program's field.

Graduates of this discipline will deepen their knowledge of ecology acquired at the Bachelor's level and will use them later if they choose to pursue a PhD in Ecology.

The professional and transversal competencies of this discipline are indispensable for any applicant in the field of ecology (both theoretical and applied): for protected area keepers, employees of environment advisory firms, employees of environmental agencies (Environmental Protection Agencies, The Romanian Waters Administration, Garda de Mediu), for the pre-university teachers and the teaching staff in the university education, for the volunteers of the environmental NGOs, even for the civil servants from the respective ministries.

10. Assessment (examination)

Type of activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade	
10.4 Course	Knowledge of the	Colloquium	60%	
	information content			
	Understanding and			
	interpretation of ecological			
	data			
10.5 Seminar/laboratory	Evaluation of practical	Scientific essay and peer	40 %	
	skills	evaluation		
10.6 Minimum performance standard				
Knowledge of at least 50% of the information that pertains to the course				
• Acquiring the skills (in proportion of at least 50%) practiced during seminars				

Date of filling	Signature of the course professor	Signature of the seminar professor
11.07.2024	Lecturer Dr. Cristina Craioveanu	Lecturer Dr. Cristina Craioveanu

Date of approval by the department 18.07.2024

Head of department's signature Lecturer Dr. Florin Crișan