SYLLABUS

1. Information regarding the programme				
1.1 Higher education institution	Babeş-Bolyai University			
1.2 Faculty	Faculty of Biology and Geology			
1.3 Department	Department of Molecular Biology and Biotechnology			
1.4 Field of study	Biology			
1.5 Study cycle	Master			
1.6 Study programme / Qualification	Molecular Biotechnology			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Modern Biochemical and Biophysical Methods					
(ro)							
2.2 Course coordinator			Ι	ecturer Rauca Valent	in-l	Florian, PhD	
2.3 Seminar coordinator		Ι	Lecturer Rauca Valentin-Florian, PhD				
2.4. Year of study	2	2.5 Semester	3	2.6. Type of	Ε	2.7 Type of discipline	Manda
				evaluation			tory
2.8. Code of the disciplin	ne	BME1306					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:	•			·	hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					24
Tutorship					16
Evaluations				4	
Other activities:					
3.7 Total individual study hours 98					•

5.7 Total matvidual study nours	90
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

¥			
4.1. curriculum	•	Biochemistry, Biophysics, Molecular Biology	
4.2. competencies	•	• Use of laboratory equipment;	
	•	Application of modern techniques for biochemical and biophysical	
		analysis of biological samples in medical, environmental and	
		research laboratories.	

5. Conditions (if necessary)

5.1. for th	e course	• Beamer		
		Online meeting platform		
5.2. for t	he seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,		
activities		Computers, specific development environment		
6. Specific	competencies acqu	iired		
Professional competencies	 use of equi Ability to structures at the cellu Learning biochemica 	on of the physical and chemical bases for the application of methods and the pment to investigate biological processes; recognize and understand the main steps in the investigation of biological using a range of advanced techniques and methods for the exploration of life lar and molecular level. pasic principles and practical skills in the use of advanced biophysical and al techniques and methods. perform advanced biophysical and biochemical analyses, to process and		
	interpret experimental data.			
tencies	Providing the necessary information to assimilate the content of the subjects Recombinant DNA Technology, Bionanotechnologies, Molecular Microbiolog Molecular Immunology.			
Fransversal competencies	• Use of the concepts and notions specific to the methodology and handling of mo investigation equipment in various contexts (analytical laboratories, research industrial laboratories, clinical laboratories).			
Transve	• Efficient use of information sources (Internet portals, specialized software applic databases) both in Romanian and in English			

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquiring advanced knowledge of the techniques and principles of operation of modern equipment used in clinical and interdisciplinary research laboratories.
7.2 Specific objective of the discipline	 Knowledge of the principles of application and operation of biochemical methods (immunoblotting, high-performance chromatography) in the characterization of the composition and properties of biomolecules and biological structures. Fundamentals of modern physical methods (fluorescence microscopy, atomic force microscopy, IR and Raman spectroscopy) for the exploration of life at the molecular and cellular level

8. Content

8.1. Course	Teaching methods	Remarks
1. Introduction to the fluorimetric study of cells	Video-assisted frontal	Students will recall the
and biomolecules. (2 hours)	lecture in English. Recap of	principle of fluorescence.
	knowledge; Conversation	Bibliography: [1], [2], [9]
	-	

2. Fluorescence microscopy: principles, techniques and equipment (2 hours).	Instruction by modeling. Problematization and Discovery Learning	Bibliography: [1], [2], [9]
3. Biological applications of fluorescence microscopy. Highlighting cellular structures (nucleus, cell organelles, cytoskeleton) and biomolecules (nucleic acids, proteins, lipid molecules) by using fluorescent markers (2 hours).	Frontal lecture with video support. Conversation. Instruction by modeling. Problematization and discovery learning	Bibliography: [1], [2], [9]
4. Scanning probe microscopy. Probe - specimen interaction, applications in the evaluation of biological samples (2 hours).	Frontal lecture with video support. Conversation. Instruction by modeling. Problematization and discovery learning	Bibliography: [3], [9]
5.Atomic force microscopy, constructive elements: scanner, cantilever-tip, laser - photodiode, electronic control, acquisition and processing of photodiode signals.	Frontal lecture with video support. Conversation. Instruction by modeling. Problematization and discovery learning	Bibliography: [3], [9]
6. 3D morphological imaging, color matrix attachment, 2D representation. Measuring nano- dimension image elements, relative positioning, nano-object section, haptically mediated mechanical nanomanipulation. (2 hours)	Frontal lecture with video support. Conversation. Instruction by modeling. Problematization and discovery learning	Bibliography: [3], [9]
7. General notions of chromatography-principles, types of chromatography (2 hours)	Frontal lecture with video support. Conversation. Instruction by modeling. Problematization and discovery learning	Bibliography: [7], [8], [9]
8. High Performance Liquid Chromatography (HPLC) -principles, types of HPLC techniques (2 hours).	Frontal lecture with video support. Conversation. Instruction by modeling. Problematization and discovery learning	Bibliography: [7], [8], [9]
9. Interaction of electromagnetic radiation with matter: general spectroscopy (2 hours)	Frontal lecture with video support. Conversation. Summarizing the knowledge gained.	Bibliography: [4], [5], [6], [9]
10. FTIR and Raman methods: principles and apparatus description (2 hours)	Frontal lecture with video support. Conversation.	Bibliography: [4], [5], [6], [9]
11. Biological and biomedical applications of FTIR and Raman methods. PCA analysis of FTIR spectra (2 hours).	Frontal lecture with video support.Conversation. Problematization and discovery learning	Bibliography: [4], [5], [6], [9]
11-12. Electrophoresis - general principle and types of electrophoresis (4 hours)	Frontal lecture with video support. Conversation. Problematization and discovery learning	Bibliography: [7], [8], [9]
13. Western blotting- principle, applications and techniques (2 hours)	Frontal lecture with video support. Conversation. Problematization and discovery learning	Bibliography: [7], [8], [9]

Bibliography

[1] Spring, K.R. (2003) Fluorescence microscopy. in Encyclopedia of Optical Engineering, Marcel Dekker, New York, New York, pag. 548-555.

[2] Lichtman, J.W., Conchello, J.A. (2005) Fluorescence microscopy. Nature Methods 2: 910-919.

[3] Mironov, L.V. (2004) Fundamentals of scanning probe microscopy. Russioan Academy of Sciences, Institute of Physics of Microstructures, Nizhniy Novgorod.

[4] Leopold, N. (2009) Surface-enhanced Raman spectroscopy. Selected Applications, Editura Napoca Star, Cluj-Napoca.

[5] Iliescu, T., Cîntă Pînzaru, S., Maniu, D., Astilean, S., Grecu, R. (2002) Aplicații ale spectroscopiei vibraționale, Ed. Casa Cărții de Stiință, Cluj-Napoca.

[6] Siebert, F, Hildebrandt P. (2008) Vibrational Spectroscopy in Life Science, Wiley-VCH.

[7] Keith, W. (2010) Principles and techniques of biochemistry and molecular biology, Cambridge University Press, pag. 433-477.

[8] Robyt, J.R., White, B.J. (1990) Biochemical techniques Theory and Practice, Waveland Press, pag. 73-128.

[9] Electronic course material (Powerpoint presentations)

(Books and course materials can be found in the libraries of the Faculty of Biology and Geology and the Faculty of Physics respectively)

8.2 Seminar / Laboratory (Total 28 hours)	Teaching methods	Observații
1. Presentation of the laboratory; Working	Face-to-face seminar.	
principles of applied fluorescence techniques.	Explanation, Conversation.	
DNA staining with DAPI for cell staining and	Demonstrative practical	
counting (2 hours).	activity	
2. Nile red staining to highlight lipid inclusions (2	Demonstrative practical	
hours)	activity	
3. Presentation of the AFM microscope, use in	Face-to-face seminar.	
"contact mode" and "non-contact mode" for	Explanation. Conversation.	
scanning standard samples. Haptic assisted	Demonstrative practical	
mechanical nanomanipulation in contact mode. (6	activity	
hours)		
4. HPLC quantitative determination of an	Face-to-face seminar.	
oxidative stress marker in plasma	Explanation. Conversation.	
(malondialdehyde) (4 hours)	Demonstrative practical	
	activity	
5. Analysis of hydrogen atom spectra; X-ray	Explanation. Conversation.	
fluorescence analysis; UV-Vis spectroscopy.	Demonstrative practical	
	activity	
6. Semi-quantitative determination of the	Face-to-face seminar.	
transcription factor NF-kB by polyacrylamide gel	Explanation. Conversation.	
electrophoresis under denaturing conditions	Demonstrative practical	
followed by western blotting (6 hours)	activity	
6. Evaluation (examination) of laboratory work.	Assessment by written test	
(2 hours)		
Bibliography		
Collection of protocols for each lab work available	in the department library.	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is similar in content to courses in other European universities and takes into account the level of preparation of the students
- The course is fundamental for the development of skills to work in diverse laboratories, but in which modern methods of life investigation are applied at the cellular and molecular level.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
10.4 Lecture	Assimilation of information content Ability to use concepts	Written examination	50%	
10.5 Seminar/laboratory	Skills in laboratory work and application of an experimental protocol	Written colloquium	50%	
10.6 Minimum performance standards				
• Knowledge of 50% of the information contained in the course				
Knowledge of 50% of the information contained in the laboratory/seminar work				

Date	Signature of course coordinator	Signature of seminar coordinator
11.07.2024	Lecturer Valentin-Florian Rauca, PhD	Lecturer Valentin-Florian Rauca. PhD

Date of approval

Signature of the head of department

16.07.2024

Assoc. Prof. Beatrice Kelemen, PhD