SYLLABUS

PLANT GENETIC ENGINEERING

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Molecular Biotechnology

2. Information regarding the discipline

2.1 Name of the discipline (en)		Plant Genetic Engineering (BME1304)					
(ro)		Inginerie Genetica Vegetala					
2.2 Course coordinator		Res. Dr. Aurori Adriana Carolina					
2.3 Seminar coordinator			Re	es. Dr. Aurori Adriana C	arol	ina	
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	C	2.7 Type of discipline	DS

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					4
Evaluations					4
Other activities:					

3.7 Total individual study hours	98
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	General Genetics, Molecular Genetics
4.2. competencies	 Recombinant DNA technology

5. Conditions (if necessary)

5.1. for the course	Basic Informatics
5.2. for the seminar /lab	Bibliographic reports preparation
activities	

6. Specific competencies acquired

Professional skills	 Knowledge of international norms and European legislation regarding genetically modified organisms. Understanding and accepting their usefulness for a sustainable development of agriculture, bio-industries and application in other fields of activity. Understanding the need to apply a complex methodology to increase the efficiency of plant improvement, through biotechnological methods, in the context of population growth and global climate changes. Ability to interpret raw and processed data obtained through plant genetic engineering techniques.
Transversal skills	 Acquisition of basic knowledge regarding the genetic modification of plants for the purpose of their breeding by biotechnological methods. The graduates will develop abilities to carry out standard work activities in the laboratory.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Familiarization of graduates with the methodology and purpose of genetic modification of plants.
7.2 Specific objective of the discipline	 Acquiring basic knowledge regarding the totipotency of the plant somatic cell and its genetic manipulation.
	 Acquiring the methodology of genetic modification of plants.
	• Formation of a general knowledge regarding the applicability, benefits and
	possible risks of genetically modified plants.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction and brief history of plant genetic engineering	Frontal lecture	2 hours
[1; 3]		
2. The main methods of in vitro cultures, necessary for the	Frontal lecture	2 hours
genetic modification of plants. [1].		
3. Generalities regarding the main branches of genetic	Frontal lecture	2 hours
engineering and their applicability. [1; 3]		
4. Somaclonal variability and its role in obtaining stress-	Frontal lecture	2 hours
resistant plants. [1]		
5. Cellular genetic engineering – plant protoplasts as the basic	Frontal lecture	2 hours
experimental model. [1; 2; 3; 5]		
6. Cell fusion: fusion methods and their applicability. [1; 2]	Frontal lecture	2 hours
7. The genetic consequences of plant cells fusion; the somatic	Frontal lecture	2 hours
incompatibility. [1; 2]		
8. Obtaining and analyzing of the somatic hybrids: cytogenetic	Frontal lecture	2 hours
and molecular analysis.[1; 5]		
9. The practical importance of symmetrical and asymmetrical	Frontal lecture	2 hours
somatic hybrids, examples. [1, 2, 3]		
10. Endocytobiotic engineering and its importance: the transfer	Frontal lecture	2 hours
of organelles or bacterial cells in plant protoplasts. [1]		

11-12. Gene engineering, stages and methods for genetic	Frontal lecture	4 hours
transformation of plant cells [1]		
13. The importance of marker and reporter genes in	Frontal lecture	2 hours
fundamental and applied research. [1]		
14. Bioethical problems associated with the application of	Frontal lecture	2 hours
transgenesis to plants. New biotechnologies using RNAi and		
genome editing [1; 3; 4]		

Bibliography

- 1. Elena Rakosy-Tican. *Inginerie genetică vegetală* note de curs, Casa Cartii de Stiinta Cluj-Napoca, 2005, ISBN 973-686-704-8 (242 pp.). (BCU, biblioteca de zoologie, alte biblioteci ale facultatii)
- 2.. Lenuța Rakosy-Tican. *Utilizarea tehnicilor de electrofuziune în hibridarea somatică a plantelor*. Cluj University Press, Cluj Napoca, 1998, 187 pp (Biblioteca de zoologie)
- 3. V. Soran, Lenuţa Rakosy-Tican, A. Ardelean, 1993. *Elemente de biotehnologie*. Universitatea de Vest "Vasile Goldiş" Arad, Ed. Mirton, 250 pp (BCU, Biblioteca de zoologie).
- 4. Lenuţa Rakosy-Tican. *Ingineria genetică şi clonarea organismelor*, In: Biologie Pregătirea examenului pentru gradul II în învăţământ, teme de specialitate şi metodica predării disciplinei. A. Barna, I. Pop (coordonatori), Editura Albastră Cluj-Napoca, 2002, p. 117-134. (BCU)
- 5. Cachiță-Cosma D, Deliu C, Lenuța Rakosy-Tican, Ardelean A (2004) *Tratat de Biotehnologie Vegetala*. Vol. 1. Ed. Dacia, Cluj-Napoca

Titlurile 1-5 sunt disponibile la biblioteca de zoologie a facultatii; o parte sunt disponibile si la BCU Cluj

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction to Plant Genetic Engineering: syllabus,	Frontal lecture;	
educational objectives, work protection and laboratory		
presentation.		
2. Organ and tissue in vitro culture: computational	Frontal lecture and work	
techniques in biology. Sterilization techniques. Preparation of	activity in the laboratory,	
culture media.	splitting in teams;	
3. In vitro organ and tissue culture: in vitro seed		
germination - Species used: tobacco (Nicotiana tabacum) and	Frontal lecture and work	
wheat (Triticum aestivum); organ culture - transfer of plant	activity in the laboratory,	
fragments from <i>in vitro</i> to <i>in vitro</i> (multiplication), species	individually;	
used: potato (Solanum spp).		
4. Genetic transformation with Agrobacterium tumefaciens	Frontal lecture and work	
I: principles and initiation of <i>in vitro</i> cultures - Species used:	activity in the laboratory,	
potato (Solanum spp.).	splitting in teams;	
5. Genetic transformation with Agrobacterium tumefaciens	Frontal lecture and work	
II: co-culture and regeneration of putatively genetically	activity in the laboratory,	
transformed plants.	splitting in teams;	
6. Somatic hybridization I: principles; initiation of plant	Frontal lecture and work	
material for protoplast isolation - species used: sunflower	activity in the laboratory,	
(Helianthus annuus) and wheat (Triticum aestivum).	splitting in teams;	
7. Somatic hybridization II: isolation of plant protoplasts I.	Frontal lecture and work	
	activity in the laboratory,	
	splitting in teams;	
8. Somatic hybridization III: isolation of plant protoplasts II.	Frontal lecture and work	
	activity in the laboratory,	
	splitting in teams;	
9. Somatic hybridization IV: determination of the protoplast	Frontal lecture and work	

number in the cell suspension using a hemocytometer;	activity in the laboratory,
encapsulation of protoplasts in alginate.	splitting in teams;
10. Somatic hybridization V : fusion of plant protoplasts –	Frontal lecture and work
electrofusion and chemical fusion with PEG.	activity in the laboratory,
	splitting in teams;
11. Elements of cytogenetics: observation of the	
chromosomes in mitotic division in onion roots (Allium cepa);	Frontal lecture and work
determination of the ploidy level by the indirect method, in	activity in the laboratory,
correlation with the number of somatic chloroplasts; statistical	individually;
interpretation.	
12. Genetic transformation III: DNA isolation I - species	Frontal lecture and work
used: potato (Solanum tuberosum).	activity in the laboratory,
	individually;
13. Genetic transformation IV: DNA isolation II; PCR of	Frontal lecture and work
nucleic acids.	activity in the laboratory,
	splitting in teams;
14. Genetic transformation V: electrophoresis of nucleic	
acids; identification of genetically modified organisms -	Frontal lecture and work
species used: potato (Solanum tuberosum); observation of	activity in the laboratory,
plants transformed with the <i>gfp</i> gene - species used: tobacco	splitting in teams;
(Nicotiana tabacum).	

Bibliography

- 1. Rakosy-Tican L(ed.) (1998) Manual de laborator de inginerie genetica vegetala romana si engleza disponibil la biblioteca de zoologie in 10 exemplare.
- 2. Manualele de laborator de la Universitatea Nottingham (2 vol.) 1998 disponibile la biblioteca de zoologie.
- 3. Articole de specialitate, inclusiv publicatii relevante ale colectivului, vor fi selectate pentru prezentari.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course has a similar content to courses from other European universities, being constantly updated and adapted to the level of training of students.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of informational content	Written exam	50%
10.5 Seminar/lab activities	Ability to interpret raw and processed data from the received content Knowing the informational content	Written colloquium	50%
10.6Minimum performance standards			
• Knowing 50% of the information contained in the course			

• Knowing 60% of the information from the laboratory

Date Signature of course coordinator Signature of seminar coordinator

11.07.2024 Res. Dr. Adriana Carolina Aurori Res. Dr. Adriana Carolina Aurori

Date of approval Signature of the head of department

16.07.2024 Assoc. Prof. Beatrice Kelemen