COURSE SYLLABUS BIONANOTECHNOLOGIES

1. Data about the programme

1.1 Higher education	Babeș-Bolyai University
institution	
1.2 Faculty	Biology and Geology
1.3 Department	Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	2 years, Full Time
1.6 Study Programme /	Master/ Molecular Biotechnology
Qualification	

2. Course data

2.1 Name of discipline BIONANO			OTE	CHNOLOGIES (in En	glish) (BME1201)	
2.2 Teacher responsible for lectures			Pı	Profesor dr. Manuela Banciu			
2.3 Teacher responsible for seminars			Pı	rofesor dr. Manuela Ba	nciu		
2.4 Year of study	1	2.5 Semester	Semester 2 2.6. Type of E 2.7 Course framework I			DSIN	
			evaluation				

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2
		Lectures		Laboratory classes	
3.4 Total hours in the curriculum	126	Out of which: 3.5	28	3.6 Seminars /	28
		Lectures		Laboratory classes	
Allocation of study time:		·	•		ore
Study supported by textbooks, other co	ourse m	naterials, recommend	led bib	liography and personal	20
student notes					
Additional learning activities in the library, on specialized online platforms and in the field					10
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays					30
Tutoring					8
Examinations					2
Other activities:					
3.7 Individual study (total hours) 70					
3.8 Total hours per semester 126					

4. Preconditions (where applicable)

3.9 Number of credits

4.1 Curriculum	Biochemistry, Cell and Molecular Biology, Genetics.
4.2 Competences	Interpretation of scientific information

5

5. Conditions (where applicable)

5.1 Conducting lectures	MS teams platform
	Audio-video logistics

5.2 Conducting seminars /	•	Admission at final evaluation is conditioned by at least
laboratory classes		80% attendances at the scheduled laboratory classes.

6. Specific competences acquired

Professional competences	 The student achieves analytical and synthesis skills in Biotechnologies, Nanotechnologies, Molecular Biology, Genetic Engineering, and Nanomedicine. The student achieves analytical and synthesis skills of scientific information presented in Englsh.
Transversal competences	 Acquisition of basic theoretical knowledge for future doctoral research in the field of Bionanotechnologies, Genetic Engineering, Nanomedicine, Molecular Biotechnologies.Dezvoltarea capacităților de a lucra independent cat si in echipa.

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	• Acquiring general knowledge about the importance of the bionanotechnologies in applicative research.
7.2 Specific objectives	 Acquiring theoretical knowledge about the practical application of biomaterials. Acquiring theoretical knowledge about challenges of the bionanomachines in tight connection with biological barriers. Acquiring theoretical knowledge about the practical application of the bionanosensors.

8. Content

8.1 Lectures	Teaching methods	Observations
1. Introduction to Nanotechnology and, respectively, Bionanotechnology. Brief history, interdisciplinarity, Nanomedicine.	Debate, interactive presentationbased on critical thinking.	2 hours
2. Applications of Bionanotechnologies: biomaterials, bionanosystems, bionanosensors, etc.	Debate, interactive presentationbased on critical thinking.	2 hours
3-4. Biomaterials: applications in Nanomedicine, Environmental Quality Monitoring, food industry, etc.	Debate, interactive presentationbased on critical thinking.	4 hours
5-6. Bionanosystems: applications in targeted therapy and imaging	Debate, interactive presentationbased on critical thinking.	4 hours
7. Modern techniques for obtaining and optimizing bionanosystems for biomedical applications.	Debate, interactive presentationbased on critical thinking.	2 hours
8. Artificial viruses: methods of obtaining, advantages and disadvantages.	Debate, interactive presentationbased on critical thinking.	2 hours

9-10. Bionanosensors: structure, biological recognition processes, types.	Debate, interactive presentationbased on critical thinking.	3 hours
10-11. Bionanosensors for biomedical applications	Debate, interactive presentationbased on critical thinking.	3 hours
12. Bionanosensors used to monitor air and water quality	Debate, interactive presentationbased on critical thinking.	2 hours
13. Molecular bionanosensors	Debate, interactive presentationbased on critical thinking.	2 hours
14. Biomaterials used in tissue engineering	Debate, interactive presentationbased on critical thinking.	2 hours
Bibliografie		

Scientific articles from public databases (PubMed Central, SpringerLink ,etc.) accessed via "LUCIAN BLAGA" Central University Library of Cluj-Napoca, Anelis

8.2 Seminars / laboratory classes	Teaching methods	Observations
Seminars - problem-based learning: identification and	Seminars – problem-based	12 hours
optimization of bionanosystems with applications in	learning	
targeted therapies		
Seminasr - presentation of reports/projects that address	Seminars based on critical	16 hours
research in the field of Bionanotechnologies -	thinking	
presentations in English		
Bibliografie		

Scientific articles from public databases (PubMed Central, SpringerLink, etc.) accessed via "LUCIAN BLAGA" Central University Library of Cluj-Napoca, Anelis

9. Aligning the contents of the discipline with the expectations of the epistemic communityrepresentatives, professional associations and standard employers operating in the program field

- The course has a similar content to courses from other European universities •
- The course is essential for the development of analytical and synthesis skills in • Bionanotechnologies, Nanotechnologies, Molecular Biology, Genetic Engineering, and Nanomedicine.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade		
10.4 Lectures	Assessment of knowledge	Exam-presentation of a project in the the field of Bionanotechnologies	50 %		
10.5 Seminars/laboratory classes	Activity during seminars	Evaluation during the seminars	50 %		
	Assessment of knowledge				
10.6 Minimum performance standard					

- Knowledge of 50% of the information content of the course as well as aquired from scientific articles
- Involvement in at least 50% of the seminars activities.

Date of	Signature of the teacher	Signature of the teacher
issue	responsible for lectures	responsible for seminars/laboratory classess
11.07.2024	Prof. dr. Manuela Banciu	Prof. dr. Manuela Banciu

Date of approval in the department 17.07.2024

Signature of the Head of the Department Conf. Dr. Beatrice Kelemen