SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline B a		Basics of Statistics						
I			Bazele statisticii					
2.2 Course coordinator Prof. Sanda Micula, PhD. Habil.								
2.3 Seminar coordinator			Prof	: S	Sanda Micula, PhD. Hab	il.		
2.4. Year of study 1	1	2.5 Sen	nestei	1	2.6. Type of evaluation	E	2.7 Type of discipline	Elective
2.8 Course code MME81		180						

3. Total estimated time (hours/semester of didactic activities)

		/			
3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 + 1
					pr.
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					32
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					26
Tutorship					10
Evaluations				18	
Other activities:				-	
3.7 Total individual study hours		98			
2.9 Total hours nor compater		154			

3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Basic notions of Algebra	
	Basic notions of Mathematical Analysis	
4.2. competencies	Logical thinking	
	Basic logical programming skills	

5. Conditions (if necessary)

5.1. for the course	• Lecture room with large blackboard and video projector, laptop, beamer
5.2. for the seminar /lab	 Laboratory with computers having Office and Matlab installed

6. Specific competencies acquired

	c competencies accuneu
Professional competencies	 C4.1 Defining basic concepts, theory and mathematical models C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving real-life problems C4.5 Embedding formal models in applications from various areas
Transversal competencies	CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Understand the broad directions of Descriptive and Inferential Statistics in order to perform analysis of data Acquire the ability to use statistical analysis features of various software
7.2 Specific objective of the discipline	 Acquire the ability to collect, organize and display data in order to perform statistical analysis Become familiar and be able to work with various statistical models and algorithms Acquire the ability to use statistical software and interpret the results

8. Content

8.1 Course	Teaching methods	Remarks
 Review of Probability theory notions. Random variables. Probability distribution function. Cumulative distribution function. Common discrete and continuous distributions. 	 Interactive exposure Explanation Conversation Description 	
2. Numerical characteristics of random variables. Expectation, median, mode, variance, standard deviation, covariance, correlation coefficient. Properties. Examples.	 Interactive exposure Explanation Conversation Description 	
3. Introduction. Populations and samples, terminology. Declaring the objectives. Data collection. Statistical data mining techniques. Graphical display of data, pie charts, bar graphs. Frequency and grouped frequency tables. Histograms, frequency polygons, stem-and-leaf plots.	 Interactive exposure Explanation Conversation Description 	
4. Descriptive Statistics. Parameters of a statistical distribution. Measures of central	Interactive exposureExplanation	

tendency. Measures of variability. Variance and standard deviation, interpretation. Coefficient of variation.	ConversationDescription
 5. Percentiles, deciles, quartiles, interquartile range. Outliers, detection of outliers, the 3σ rule. Boxplots. Sample theory. Sample functions. Standard errors of estimates. Examples and applications. Interpretation of data. 	 Interactive exposure Explanation Conversation Didactical demonstration
6. Inferential Statistics. Notions of estimation theory. Point estimators, properties. Method of moments. Examples. Estimation of standard eroors.	 Interactive exposure Explanation Conversation Didactical demonstration
7. The Normal and Standard Normal distribution, Z-quantiles. The Student T-distribution and T- quantiles. One-sided and two-sided confidence intervals. Estimating the mean and the proportion by confidence intervals. Examples. Selecting the sample size.	 Interactive exposure Explanation Conversation Description
 8. Two-sample statistics, pooled proportion. Estimating the difference of proportions. Confidence intervals for paired data. Pooled variance of two samples. Estimating the difference of means by confidence intervals. Examples. 	 Interactive exposure Explanation Conversation Description
 Hypothesis testing. Basic concepts, general framework. Rejection region. Type I and type II errors. Significance testing and P- values. 	 Interactive exposure Explanation Conversation Didactical demonstration
10. Z-tests for the mean. Selecting the sample size. Examples. T (Student)-tests for the mean. Tests for proportions.	Interactive exposureExplanationConversation
 11. The Fisher F-distribution and F-quantiles. F- tests for the ratio of variances. Tests for the difference of means. Paired data tests. Computation of type II errrors probabilities. Examples. 	 Interactive exposure Explanation Conversation Didactical demonstration
 12. Correlation and Regression. Two-sample statistics. Scatter plots and time plots. Conditional mean. Curves of regression. Method of least squares. Linear regression. Examples. 	 Interactive exposure Explanation Conversation
13. Overfitting a model. Polynomial regression. Examples and applications. Fitting models.	Interactive exposureExplanationConversation

Univariate analysis of variance (ANOVA) and P. square, Prediction, Examples	 Description 	1
and R-square. Prediction. Examples.		
14. Multivariate analysis of variance (ANOVA),	• Interactive exposure	
and F-test. Coefficient of determination.	Explanation	
Adjusted R-square. Categorical predictors	Conversation	
and dummy variables. Significant	Didactical demonstration	
correlation. Examples.		
Bibliography		D
1. Micula, S., Probability and Statistics for Comp		-
 Miller, J.D., Statistics for Data Science, Packt Bruce P., Bruce A., Practical Statistics for Data 		
CA, USA, 2017.	-	-
 Baron, M., Probability and Statistics for Comp Francis, Boca Raton, FL, USA, 2019. 		·
5. Milton, J.S., Arnold, J. C., Introduction to Prol	2 1	11
for Engineering and the Computing Sciences, 36. Gentle, J. E., Elements of Computational Statistics		
8.2 Seminar /Laboratory	Teaching methods	Remarks
1. Introduction to Matlab (Octave).	Interactive exposure	The seminar is
	Explanation	structured as 2
	Conversation	hours per
		week, every
		other week
2. Random variables and their characteristics.	• Interactive exposure	
Statistics and Machine Learning toolbox in	• Explanation	
Matlab.	Conversation	
	 Individual and group work 	
3. Descriptive Statistics. Grouped frequency	Interactive exposure	
table. Computation of statistical measures.	Conversation	
Graphical display of data. Histogram,	• Synthesis	
frequency polygon, boxplot.	Individual and group	
	work	
4. Confidence intervals. Interpretation of	• Interactive exposure	
results.	Explanation	
	Conversation	
	• Individual and group	
	work	
5. Hypothesis testing. Interpretation of results.	• Interactive exposure	
	• Explanation	
	• Conversation	
	Individual and group	
6. Correlation and regression.	work	
o. Conclation and regression.	Interactive exposureExplanation	
	ExplanationConversation	
	Individual and group	
	• marviadar and group work	
7. Presentation. A project of statistical analysis	Conversation	
of data.	 Individual and group 	
	9. or h	1
	work	

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Miller, J.D., Statistics for Data Science, Packt Publishing, Birmingham, UK, 2017.
- 3. Bruce P., Bruce A., Practical Statistics for Data Scientists, 50 Essential Concepts, O'Reilly Media, CA, USA, 2017.
- 7. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, USA, 2019.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 5. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for studying Computer Science;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10.	Evaluation
10.	L'uluulon

10.4 Course- acquire the basic principles in Statistics, with emphasis on real life applications; - be able to apply correctly the course concepts on various problems - be able to use statistical exploratory data analysis toolsWritten exam60%10.5 Seminar/Lab activities- be able to apply course concepts and techniques on practical problems - be able to solve numerical statistical problems in Excel and Matlab - be able to perform statistical analysis of data- participation in discussing, solving and implementing problems throughout the semester - individual presentation of solutions40%
activitiesconcepts and techniques on practical problems - be able to solve numerical statistical problems in Excel and Matlabdiscussing, solving and implementing problems throughout the semester - individual presentation of solutions - presentation of a project of statistical analysis of

A grade of 5 or above (on a scale from 1 to 10) on **<u>each</u>** activity mentioned above (written test, seminar/ lab evaluation)

Date

Signature of course coordinator

Signature of seminar coordinator

24.04.2024

Prof. Sanda Micula, PhD. Habil.

Prof. Sanda Micula, PhD. Habil.

Date of approval

Signature of the head of department

Prof. dr. Andrei Mărcuş