SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Biological networks and systems				
(ro)			Rețele biologice și sistemice				
2.2 Course coordinator Assist. prof. László Zoltán, PhD							
2.3 Seminar coordinator			Assist. prof. László Zoltán, PhD				
2.4. Year of study	2	2.5 Semester	3 2.6. Type of evaluation E 2.7 Type of discipline Elective				
2.8. Code of the discipline BMR1138							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2	course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5	course	28	3.6 seminar/laboratory	28
Time allotment:						hours
Learning using manual, course support, bibliography, course notes						24
Additional documentation (in libraries, on electronic platforms, field documentation)					18	
Preparation for seminars/labs, homework, papers, portfolios and essays					16	
Tutorship					8	
Evaluations					4	
Other activities:						
3.7 Total individual study hours70						

5.7 Total marriadal Stady nours	10
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Average computer skills

5. Conditions (if necessary)

5.1. for the course	• Beamer	
	Online meeting platform	
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,	
activities	Computers, specific development environment	

6. Specific competencies acquired

Professional competencies	 Develop an understanding of how networks control biological processes and how they evolve in response to external factors as well as evolutionary processes. Descriptions of the algorithms and methods by which biological networks can be studied, with the use of computer code.
Transversal competencies	 Efficient conduct of activities organized in an interdisciplinary group Using the specific concepts of network biology to interpret the results or solve theoretical and experimental problems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Description of analytical methods and downstream data processing, integration and visualization regarding biological networks
7.2 Specific objective of the discipline	 Description of main techniques, data acquisition and processing strategies Understanding the principles underlying the biological networks Knowledge of main types of biological networks Applying tools for data processing and visualization regarding biological networks

8. Content

8.1 Course	Teaching methods	Remarks
Introduction	Interactive exposure	
Graph theory	Presentation	
Random and non – random networks	Explanation	
Different network types and their use in biology	Practical examples	
Evolving networks and modells	Case-study discussions	
Degree correlations		
Network robustness and stability		
Communities as networks		
Spreading phenomena		

Bibliography

- Barabási, A. L. (2013). Network science. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 371, Issue 1987). https://doi.org/10.1098/rsta.2012.0375
- 2. May, R. M. (1972). Will a large complex system be stable? Nature, 238(5364). https://doi.org/10.1038/238413a0
- 3. May, R. M. (2001). Stability and Complexity in Model Ecosystems. In The Journal of Animal Ecology (Vol. 44, Issue 3). Princeton University Press. https://doi.org/10.1515/9780691206912
- Newman, M. E. J., Barabási, A. L., & Watts, D. J. (2011). The structure and dynamics of networks. In The Structure and Dynamics of Networks (Vol. 9781400841356). https://doi.org/10.1007/s10955-006-9267-8
- 5. PIMM, S. L., & LAWTON, J. H. (1978). On feeding on more than one trophic level. Nature, 275(5680), 542–544. <u>https://doi.org/10.1038/275542a0</u>

8.2 Seminar / laboratory	Teaching methods	Remarks
Introduction to R	• Interactive exposure	
Network generation using R	• Explanation	
Network topology and metrics	Conversation	
Network dynamics	Practical demonstration	
Lotka-Volterra models		
Simulations, stability and complexity		

Network visualization

Bibliography

- 1. The R Project for Statistical Computing [http://www.R-project.org/
- 2. Almende B.V. and Contributors, Benoit Thieurmel and Titouan Robert (2021). visNetwork: Network Visualization using 'vis.js' Library. R package version 2.1.0. https://CRAN.Rproject.org/package=visNetwork
- 3. Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. <u>https://igraph.org</u>
- 4. Dormann, C.F., Fruend, J., Bluethgen, N. & Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24.
- 5. Dormann, C.F., Gruber B. & Fruend, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. R news Vol 8/2, 8 11.
- 6. Dormann, C.F. (2011). How to be a specialist? Quantifying specialisation in pollination networks. Network Biology 1, 1 20.
- 7. Thomas Lin Pedersen (2021). ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. R package version 2.0.5. <u>https://CRAN.R-project.org/package=ggraph</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	Knowledge of concepts	Written exam (combined	50%		
	and methods from the	test)			
	topics of the course				
10.5 Seminar/lab activities	Evaluation of a short	Oral colloquium	50%		
	individual project				
10.6Minimum performance standards					
Each student should be graded at least 5 to both assessments of course and seminar/lab activities. To					
obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described					
during the course and practicum classes.					

DateSignature of course coordinatorSignature of seminar coordinator10.07.2024Assist. Prof. László Zoltán, PhDAssist. Prof. László Zoltán, PhD

Date of approval

Signature of the head of department

16.07.2024

Assoc. Prof. Beatrice Kelemen, PhD