SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discip	line	(en)	Molecular Taxonomy				
(ro)	(ro) Taxonomie moleculara						
2.2 Course coordinator			Prof. Markó Bálint, PhD				
		As	Assoc. Prof. Beatrice Kelemen, PhD				
2.3 Seminar coordinator		Prof. Markó Bálint, PhD					
		As	ssoc. Prof. Beatrice Kel	eme	en, PhD		
2.4. Year of study	2	2.5	3	2.6. Type of evaluation	E	2.7 Type of	Elective
		Semester				discipline	
2.8. Code of the discipline BMR1137							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					8
Evaluations					4
Other activities:					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• Genetics		
	Evolutionary Biology		
4.2. competencies	Average computer skills		
	 Skills for working in molecular biology laboratory 		

5. Conditions (if necessary)

5.1. for the course	Beamer	
	Online meeting platform	
5.2. for the seminar /lab	 Attendance of a minimum of 90% of practical/ seminar classes, 	
activities	 Computers, specific development environment 	

6. Specific competencies acquired

Professional competencies	 Students will be able to: define and explain the principles of taxonomy and molecular ecology; choose and apply the appropriate molecular techniques in order to solve some taxonomic or ecological problems; debate over and deepen the concepts of macroevolution and microevolution. Students will develop the ability to discuss and present a scientific topic. They will acquire the ability to complete, both independently and as a team, the assigned work tasks.
Transversal	 Acquiring the necessary / complementary information to conduct an individual project in molecular ecology and taxonomy Use of concepts specific to macro- and micro-evolutionary theories

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Integrarea cunoștiințelor de taxonomie, ecologie și genetică în vederea înțelegerii proceselor interconectate în teoriile macro- și microevolutive
7.2 Specific objective of the discipline	Since the last decades, both taxonomy and ecology have been revolutionized by the emergence of molecular techniques and the accessibility of new statistical methods that require the processing of complex databases. In this course, the students will have the opportunity to understand and become familiar with the object of study of this discipline. In parallel, in the laboratory works they will have the opportunity to apply practically the techniques presented from a theoretical point of view in the course. The most common molecular markers (proteins and DNA) used in taxonomy and ecology studies will be presented. Their resolution will be exemplified by case studies. In the second part of the course we will discuss the practical applications of molecular techniques in taxonomy and ecology. The following topics will be addressed: taxonomic clarifications, the concept of metapopulation, landscape genetics, conservation genetics and invasive species. The last part of the course will be devoted to a recapitulation and preparation of the topic for the final exam.

8. Content

8.1 Course	Teaching methods	Remarks
1. Taxonomy: principles and concepts	Interactive explanation	
2. Theory of 'species' – definitions, gaps,	• Presentation	
solutions		

3. Ecological bases of species delineation	 Explanation 	
4. Ecological niche analyses	 Practical examples 	
5. Macroevolution and microevolution	 Case-study discussions 	
6. Integrative taxonomy: from traditional	•	
morphology to sequencing		
7. Molecular markers in systematics and ecology		
8. Genotype and phenotype: quantitative genetics		
9. Population evolution and structure:		
reproductive patterns, genetic drift and gene flow		
10. Natural selection and interactions among		
other evolutionary forces		
11 Molecular phylogeny		
12. Analytical methods		
13. Landscape genetics		
14. Rehearsal of course main concepts		
D111 1		

Bibliography

Avise JC, 2004. Molecular Markers, Natural History, and Evolution. Sinauer Associates Inc., 669p.

Bromham, L. (2016). An introduction to molecular evolution and phylogenetics. Oxford University Press.

Pontarotti, P. (Ed.). (2011). Evolutionary biology–concepts, biodiversity, macroevolution and genome evolution. Springer Science & Business Media.

Templeton, A. R. (2021). Population genetics and microevolutionary theory. John Wiley & Sons.

All references above are available in printed copies at the Librairies of the Faculty of Biology and Geology.

8.2 Seminar / laboratory	Teaching methods	Remarks
DNA extraction	• Interactive presentation and	
PCR amplification of some target fragments and	explanation	
their purification	• Conversation	
Sanger / NGS sequencing	Practical demonstration	
Multiple viewing, assembling, and alignment of		
DNA sequences		
Database queries, BLAST, phylogenetic trees.		
From hypothesis 0 to conclusion in taxonomy		
and molecular ecology.		
Problem solving in molecular taxonomy and		
ecology		
Final evaluation		
D'11' 1		

Bibliography

DeSalle, R., Giribet, G., & Wheeler, W. (Eds.). (2002). Techniques in molecular systematics and evolution. Springer Science & Business Media.

Baker A (ed.), 2000. Molecular Methods in Ecology. Blackwell Publishing, 352p.

Felsenstein J, 2004. Inferring Phylogenies. Sinauer Associates Inc., 580p.

All references above are available in printed copies at the Librairies of the Faculty of Biology and Geology.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is applicable and allows the acquisition of practical skills needed to work in research and analysis laboratories and the interpretation of biological and theoretical data necessary for advanced bioinformatics analysis in research institutes or in R&D units at private companies.
- The course is listed in the curricula of similar specializations at Romanian and foreign Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4. Course	Knowledge of concepts	Written exam (combined	50%
	and methods from the	test)	
	topics of the course		
10.5. Seminar/lab activities	Evaluation of a short	Written colloquium	50%
	individual project	(combined test)	

10.6. Minimum performance standards

Each student should obtain a minimum of 5 (five) for the written exam and oral colloquium. To obtain the minimum grade 5 (five), the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.

Date Signature of course coordinator Signature of seminar coordinator

10.07.2024 Prof. Markó Bálint, PhD Prof. Markó Bálint, PhD

Assoc. Prof. Beatrice Kelemen, PhD Assoc. Prof. dr. Beatrice Kelemen

Date of approval Signature of the head of department

16.07.2024 Assoc. Prof. Beatrice Kelemen, PhD