SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2. Thiof mation regarding the discipline							
2.1 Name of the discipline (en) Data mining in biomedicine							
(ro)			Extragerea cunoștințelor din baze de date pentru		pentru		
biomedicină							
2.2 Course coordinate	or		Lect. Adriana Coroiu, PhD				
2.3 Seminar coordina	tor		Lect. Adriana Coroiu, PhD				
2.4. Year of study	2	2.5 Semester	3 2.6. Type of E 2.7 Type of Electiv			Elective	
				evaluation		discipline	
2.8 Code of the discipline BME1136							

3. Total estimated time (hours/semester of didactic activities)

5. I otal estimated time (nours/sen	TODUCT	or aradetic detirrines)		1	
3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					8
Evaluations					4
Other activities:					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Beamer	•
	Online meeting platform	
5.2. for the seminar /lab activities	Attendance of a minimum of 90% of practical/ seminar classes,	•
	Computers, specific development environment	

6. Specific competencies acquired

Use of databases methodologies and design environments for particular problems competencies **Professional** Quality evaluation of different database management systems in terms of structure, functionality and extensibility Implementation of database projects Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics Efficient conduct of activities organized in an interdisciplinary group and development competencies of empathic capacity of interpersonal communication, networking and collaboration **Transversal** with diverse groups Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To learn data mining and knowledge discovery concepts, methods and techniques
7.2 Specific objective of the discipline	 The students will learn various data analysis techniques and will apply these techniques for solving data mining problems using special software systems and tools.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction	Interactive exposure	
2. Concept description; Definitions	Presentation	
3. Data Preparation	 Explanation 	
4. Discovering, Ingesting, and Exploring Data	 Practical examples 	
5. Transforming Data into Analytics-Ready Data	 Case-study discussions 	
6. Data understanding		
7. Visualising data for explaratory analysis		
8-9. Unsupervised models for data visualisation		
10-12 Model Assessment and Validation		
12-14. Student presentations		

Bibliography

- 1. S. Chakrabarti et al, Data Mining. Know It All, Morgan Kaufmann, 2009.
- 2. K. Cios, W. Pedrycz, R. Swiniarski, L. Kurgan, Data Mining. A Knowledge Discovery Approach, Springer, 2007.
- 3. J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann, 2006.
- 4. P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2006.
- 5. D. Larose, Discovering Knowledge in Data. An Introduction to Data Mining, John Wiley & Sons, 2005.
- 6. Han, J., Kamber, M., Data Mining: Concepts and Techniques, 1st Edition, Morgan Kaufmann, 2000. Weka system and documentation (http://www.cs.waikato.ac.nz/ml/weka/). Weka is a suite of machine learning / data mining software. It contains Java implementation for various mining algorithms, data preprocessing filters, and experimentation capabilities. Weka is free open-source software under the GNU General Public License (GPL).

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Data preprocessing	• Interactive exposure	
2. Data Mining software tools	• Explanation	
3. SAS Visual Data Mining		

4-6. Data mining applications in biomedicine	Conversation	
7. Students project presentations	Didactical demonstration	

Bibliography

- 1.S. Chakrabarti et al, Data Mining. Know It All, Morgan Kaufmann, 2009.
- 2.K. Cios, W. Pedrycz, R. Swiniarski, L. Kurgan, Data Mining. A Knowledge Discovery Approach, Springer, 2007.
- 3.J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann, 2006.
- 4.P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2006.
- 5.D. Larose, Discovering Knowledge in Data. An Introduction to Data Mining, John Wiley & Sons, 2005.
- 6.Han, J., Kamber, M., Data Mining: Concepts and Techniques, 1st Edition, Morgan Kaufmann, 2000.
- 7. Weka system and documentation (http://www.cs.waikato.ac.nz/ml/weka/). Weka is a suite of machine learning / data mining software. It contains Java implementation for various mining algorithms, data preprocessing filters, and experimentation capabilities. Weka is free open-source software under the GNU General Public License (GPL).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software and data mining companies particularly useful and topical, developing needed abilities in modelling and visualization of data.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the
		methods	grade (%)
10.4 Course	Know concepts and methods from the domain of data	Research report and presentation	50%
	mining and knowledge discovery		
10.5 Seminar/lab activities	Apply data mining techniques in real problems	Project implementation and presentation	50%

10.6Minimum performance standards

Each student should be graded at least 5 for both assessments of course and seminar/lab activities. To obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts of data preparation to analyse them.

Date Signature of course coordinator Signature of seminar coordinator

10.07.2024 Lect. Adriana Coroiu, PhD Lect. Adriana Coroiu, PhD

Date of approval Signature of the head of department

16.07.2024 Assoc. Prof. Beatrice Kelemen, PhD