SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Metabolomics					
(ro)			Metabolomică					
2.2 Course coordinator			L	Lecturer Sesărman Viorica Alina, PhD				
2.3 Seminar coordinator			Lecturer Licărete Emilia, PhD					
2.4. Year of study	ar of study 2 2.5 Semest			2.6. Type of	E	2.7 Type of discipline	Electiv	
				evaluation			e	
2.8. Code of the discipline BME1134				· · · ·				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course sup	pport, l	oibliography, course no	tes		24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					8
Evaluations					4
Other activities:					
3.7 Total individual study hours		70			
3.8 Total hours per semester		126			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• Statistics, Biochemistry, Genomics and functional genomics
4.2. competencies	Average computer skills

5

5. Conditions (if necessary)

5.1. for the course	•	Beamer
	•	Online meeting platform
5.2. for the seminar /lab	•	Attendance of a minimum of 90% of practical/ seminar classes,
activities	•	Computers, specific development environment

6. Specific competencies acquired

nal cies	55	• Development of the ability to use concepts and terms that are specific to metabolomic techniques and data processing;
Professional	nperen	• Knowledge of using techniques for targeted and untargeted metabolite discovery and downstream data processing and visualization;
Pro	6	• Development of the capacity for analysis, synthesis and communication of specialized scientific information
		• Acquiring the information required for the assimilation of the content of the Proteomics,
7	•	Transcriptomics, Applied genomics in human health, Individual bioinformatics project
rsal		disciplines.
Transversal	comben	• Using the specific concepts of metabolomic analysis to interpret the results or solve theoretical and experimental problems of metabolite discovery and characterization.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Description of analytical methods and downstream data processing, integration and visualization for quantitation and identification of metabolites from living cells and tissues.
7.2 Specific objective of the discipline	 Description of main metabolomics techniques, data acquisition and processing strategies; Understanding the principles underlying the metabolic fluxes and metabolic networks in living cells; Knowledge of main databases for metabolomics; Applying bioinformatics tools for targeted and untargeted metabolomic data processing and visualization.

8. Content

8.1 Course	Teaching methods	Remarks
8.1 Course Metabolomics definition, aims and applications Targeted metabolomics (lipidomics, glycomics, and metabolite identification). Databases. Untargeted metabolomics. Aims and approaches. Overview of metabolic fluxes in microbial, plant and animal cells. Genome-scale metabolic networks Metabolomics for metabolite discovery, pre- clinical tests and clinical diagnostics –case studies	 Teaching methods Interactive exposure Presentation Explanation Practical examples Case-study discussions 	Remarks
Multi-omics data integration		

Bibliography

- Issaq, H. J, Proteomic and metabolomic approaches to biomarker discovery. Amsterdam : Elsevier/AP, 2013. URL: http://www.sciencedirect.com/science/book/9780123944467 Informaţii minimale. URL: https://portal.anelisplus.ro/ Acces fulltext. URL: <u>http://www.worldcat.org/oclc/847139875</u>.
- Patrinos, G.P, Molecular diagnostics. Amsterdam : Elsevier/Academic Press, 2010. URL: http://www.sciencedirect.com/science/book/9780123745378 Informații minimale. URL: https://portal.anelisplus.ro/ Acces fulltext. URL: <u>http://www.worldcat.org/oclc/528609449</u>.

Optional references:

 Sussulini, A. (Ed.). (2017). Metabolomics: from fundamentals to clinical applications (Vol. 965). Springer. <u>https://www.springer.com/gp/book/9783319476551</u> Lindon, J. C., Nicholson, J. K., & Holmes, E. (Eds.). (2007). The handbook of metabonomics and metabolomics, 1st Edition. Elsevier. <u>https://www.sciencedirect.com/book/9780444528414/the-handbook-of-metabonomics-and-metabolomics</u>

References (1, 2) are available in electronic or printed formata at the "Lucian Blaga" Academic Library and libraries of the Faculty of Biology and Geology. References (3, 4) are recommended (optional) resources made available upon request.

8.2 Seminar / laboratory	Teaching methods	Remarks
Analytical methods for targeted and untargeted	Interactive exposure	
metabolomics. Mass and NMR spectrometry.	• Explanation	
Experimental design and sample preparation of	Conversation	
biological materials.	 Practical demonstration 	
Databases and data aquisition for metabolomics		
Mass spectrometry data processing for		
metabolomics by univariate and multivariate		
statistical analyses.		
Data sharing, integration and visualization for		
metabolomics: study cases and exercises		
Genome-scale metabolic models - examples		
Evaluation of a short individual project	Evaluation	

Bibliography

- 1. Fanali, S., Liquid chromatography : applications. Burlington : Elsevier Science, 2013. URL: http://www.sciencedirect.com/science/book/9780124158061 Informații minimale. URL: https://portal.anelisplus.ro/ Acces fulltext. URL: http://www.worldcat.org/oclc/827208184.
- 2. Niessen W.M.A., Liquid chromatography-mass spectrometry. Boca Raton ; London ; New York : Taylor & Francis, 2006
- 3. Nyman S., NMR spectroscopic applications to biomedicine. Turku : Turun Yliopisto, 2001
- Sparkman, O.D., Penton, Z., Gas chromatography and mass spectrometry : a practical guide. Amsterdam : Elsevier, 2011. URL: <u>http://www.sciencedirect.com/science/book/9780123736284</u> Informații minimale. URL: https://portal.anelisplus.ro/ Acces fulltext. URL: <u>http://www.worldcat.org/oclc/713322669</u>.
- 5. Stagg, C., Magnetic resonance spectroscopy : tools for neuroscience research and emerging clinical applications. Amsterdam : Academic Press, 2013. URL: <u>http://www.sciencedirect.com/science/book/9780124016880</u> Informații minimale. URL: <u>https://portal.anelisplus.ro/ Acces fulltext. URL: <u>http://www.worldcat.org/oclc/865647250</u></u>

6. Electronic resources, databases and bioinformatics tools available online References (1, 4, 5) are available in electronic format at the libraries of the Faculty of Biology and

Geology.

Reference (2) is available in printed format at the library of the Faculty of Chemistry and Chemical Engineering.

Reference (3) is available in printed format at the library of the Faculty of Physics

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)				
10.4 Course	Knowledge of concepts	Written exam (combined	50%				
	and methods from the	test)					
	topics of the course						
10.5 Seminar/lab activities	Evaluation of a short	Oral colloquium	50%				
	individual project on the	_					
	topic of metabolomics						
10.6Minimum performance standards							
Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.							
Date	Signature of course coordinate	minar coordinator					
10.07.2024 Lecturer Alina Sesărman, PhD Lecturer Emilia Licărete, PhD							

Date of approval

Signature of the head of department

16.07.2024

Assoc. Prof. Beatrice Kelemen, PhD