SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)		Applied Genomics in human health					
(ro)		Genomică aplicată în sănătatea umană					
2.2 Course coordinator			Rareș Călin Lucaciu				
		Sef lucr. Dr. Cruceriu Daniel					
2.3 Seminar coordinator		Rareș Călin Lucaciu					
		Se	f lucr. Dr. Cruceriu Da	nie	l		
2.4. Year of study	2	2.5 Semester	r32.6. Type of evaluationE2.7 Type of disciplineElective				
2.8 Code of the discipline BME1132				1		1	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					8
Evaluations					4
Other activities:					
3.7 Total individual study hours		70			

3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Cell and molecular biology
	Genetics, genomics and functional genomics
	Biostatistics
4.2. competencies	Interpretation of cell and molecular biology data
	• Beginner programming skills (bash and R)

5. Conditions (if necessary)

5.1. for the course	• Video projector (for on-site activities)/ MS Teams or ZOOM online platforms
	• Blackboard (on site)/ graphic pad (for online communication)
5.2. for the seminar /lab activities	• Video projector (for on-site activities)/ MS Teams or ZOOM online platforms
	• Blackboard (on site)/ graphic pad (for online communication)

	• PC desktops or notebooks (at least 1 unit per 3 users or, alternatively one unit per each student if online activities are planned)					
	• Attendance of a minimum 90% of practical work / seminar is					
	prerequisite for admission at written exam					
6. Specific compete						
	By completing this course, students will be able to					
	• Understand the concept of sequencing and the principles behind using OMICs data,					
	including DNA-seq, RNA-seq, and Single Cell analysis.					
	• Understand the principles of genome/transcriptome assembly using algorithms like "de Bruijn graph" and be able to use specific bioinformatics software such as Trinity and Spades.					
	• Understand Single Nucleotide Polymorphisms (SNPs), Indels (Insertions and Deletions), Copy Number Variations (CNVs), and generate a DNA data analysis					
	pipeline to detect genomic variations. This pipeline includes steps like Quality Control					
	(QC), Mapping QC, Variant Detection, and Annotation.					
Professional	• Understand RNA data concepts and generate an analysis pipeline that includes QC,					
competencies	RNA mapping, quantification (FPKM, RPKM, TPM, TMM), differential gene					
	expression analysis (DEG analysis), and pathway analysis.					
	• Understand the concept of Single Cell analysis and its applications in biomedical research.					
	 Understand microbiome sequencing, including 16S amplicon sequencing and metagenomics. 					
	 Apply theoretical knowledge to solve practical problems in genomic and transcriptomic research related to human health. 					
	• Be familiar with and use various software tools for analyzing OMICs data, such as MaSuRCA for assembly and other specific tools for genomic variation and					
	transcriptomic analysis.					
Transversal	• To use theoretical concepts in solving practical problems in the fields of genomics					
compt	and transcriptomics in human health.					
•	• To understand the concept of gene signatures and drug discovery.					
	• To facilitate the transfer of information for understanding the human genome in general and					
	pathogenomics in particular, by acquiring and applying knowledge from related fields such					
	as cytology, genetics, molecular biology, biostatistics, and bioinformatics."					

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Knowledge of the main human genome sequencing technologies and the methods for interpreting the raw data obtained through them.
7.2 Specific objective of the discipline	 To explain the operating principles of various widely used sequencing technologies. To analyze OMICs data from genome and transcriptome assembly to variant identification and gene expression analysis. To interpret the results obtained in a clinical context.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to the Applied Genomics in Human Health	Interactive exposure	
course: syllabus and educational objectives.	Presentation	
2. Sequencing : introduction to the concept, operation of a	Explanation	
sequencing machine, and detailed aspects of this process	-	

 3. Types of OMICs data: types of data needed in various research projects 4-5. RNA-seq: mapping techniques, counting (FPKM, RPKM), and statistical comparison 6-7. DNA-seq: introduction to the concept of variant calling (SNPs) and annotation 8-10. Concept of Single Cell: basics of single-cell level analysis 11. Microbiome analysis: elements of metagenomics 12-14. Applications: data retrieval from the Sequence Read Archive (SRA), quality control, mapping, statistics, variant calling, pathway analysis, and drug discovery 	 Practical examples Case-study discussions 	
Bibliography		
1. Course notes		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction to the seminars/laboratories on Applied	· Interactive exposure	
Genomics in Human Health. Syllabus and educational	• Problem-solving activities	
objectives.	· Hands-on case-study	
2. Genome assembly: introduction to graphs and existing	 Team work activities 	
methods		
3. Transcriptome assembly: introduction to graphs and existing		
methods		
4-5. RNA-seq: mapping techniques, counting (FPKM,		
RPKM), and statistical comparison.		
6-7. DNA-seq: introduction to the concept of variant calling		
(SNPs) and annotation		
8-10. Single-cell concept: basics of single-cell level analysis		
11. Microbiome analysis: elements of metagenomics		
12-14. Applications: data retrieval from Sequence Read		
Archive (SRA), quality control, mapping, statistics, variant calling, metabolic pathway analysis, and drug discovery		
Bibliography		
1. Seminar notes		
 2. https://www.sc-best-practices.org/preamble.html 		
3. https://www.biostarhandbook.com/index.html		
4. Pevsner J. (2015) Bioinformatics and Functional Genomi	ics, 3rd Ed. Blackwell Pub, Uk	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course has a similar content to courses from other European universities, being constantly updated and adapted to the level of training of students.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the	
		methods	grade (%)	
10.4 Course	Knowledge of informational	Written exam	60%	
	content			
10.5 Seminar/lab activities	Ability to interpret cellular		40%	
	and molecular biology data in	Evaluation of annt		
	the field			
10.6Minimum performance standards				

Date

Signature of course coordinator Signature of seminar coordinator

10.07.2024

Rareș Călin Lucaciu

Rareș Călin Lucaciu

Lect. Cruceriu Daniel, PhD

Lect. Cruceriu Daniel, PhD

Date of approval

Signature of the head of department

16.07.2024

Assoc. Prof. Beatrice Kelemen