SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics

2. Information regarding the discipline

2.1 Name of the discipline (en)			Remote sensing data in ecology				
(ro)			Gestionarea și analiza datelor satelitare în ecologie				
2.2 Course coordinator	se coordinator CS II dr. Turtureanu Pavel Dan						
2.3 Seminar coordinator		CS II dr. Turtureanu Pavel Dan					
2.4. Year of study	2	2.5 Semester	Semester 3 2.6. Type of evaluation		E	2.7 Type of discipline	Elective
2.8 Code of the discipline BME1131							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2	course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5	course	28	3.6 seminar/laboratory	28
Time allotment:						hours
Learning using manual, course support, bibliography, course notes					24	
Additional documentation (in libraries, on electronic platforms, field documentation)						18
Preparation for seminars/labs, homework, papers, portfolios and essays					16	
Tutorship					8	
Evaluations					4	
Other activities:						
3.7 Total individual study hours 70						

5.7 Total mulvidual study nouis	/0
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Database, statistics
4.2. competencies	Advanced programming skills

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

Professional competencies	C5.3 The ability to understand and handle data/satellite products C5.4 Assessing parameters derived from satellite products C5.5 Statistical analysis of satellite products
Transversal competencies	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT2. Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To learn concepts and specific techniques to manage and analyse datellite data
7.2 Specific objective of the discipline	• Students will learn concepts and gather various skills of integrating, structuring, storing/managing satellite products and derived parameters. The work will focus specifically on R functions and packages

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction Techniques for obtaining ecological information through satellites Satellite image sources Satellite image processing Manipulation and exploration of satellite data Specific indices Land cover classifications based on satellite images Temporal data and monitoring ecosystem changes The greening phenomenon in relation to climate change Use of satellite images in ecosystem distribution modeling Remote sensing of carbon in terrestrial ecosystems 	 Interactive exposure Presentation Explanation Practical examples Case-study discussions 	

12. Use of satellite images in assessing	
anthropogenic pressures	
13-14. Students' presentations	

Bibliography

- 1. Pettorelli, N. 2019. Satellite remote sensing and the management of natural resources. Oxford University Press, UK.
- 2. Wegmann, M., Leutner, B., Dech, S. 2016. Remote Sensing and GIS for Ecologists. Pelagic Publishing, UK.
- 3. Pettorelli, N. 2013. The Normalized Difference Vegetation Index. Oxford University Press, UK.
- 4. Kamusoko, C. 2019. Remote Sensing Image Classification in R. Springer Geography, Singapore.
- 5. Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., & Choler, P. (2017). Observed long-term greening of alpine vegetation—a case study in the French Alps. Environmental Research Letters, 12(11), 114006.
- 6. Choler, P. (2015). Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences, 12(12), 3885-3897.
- Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., ... & Zhang, X. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383.
- He, K. S., Bradley, B. A., Cord, A. F., Rocchini, D., Tuanmu, M. N., Schmidtlein, S., ... & Pettorelli, N. (2015). Will remote sensing shape the next generation of species distribution models?. Remote Sensing in Ecology and Conservation, 1(1), 4-18.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Sources of satellite imagery	• Interactive exposure	
2. Manipulating and pre-processing satellite	• Explanation	
imagery	Conversation	
3. Deriving information and computing indices	Didactical demonstration	
4. Satellite image classification		
7. Students' project presentations		

Bibliography

- 1. Pettorelli, N. 2019. Satellite remote sensing and the management of natural resources. Oxford University Press, UK.
- 2. Wegmann, M., Leutner, B., Dech, S. 2016. Remote Sensing and GIS for Ecologists. Pelagic Publishing, UK.
- 3. Pettorelli, N. 2013. The Normalized Difference Vegetation Index. Oxford University Press, UK.
- 4. Kamusoko, C. 2019. Remote Sensing Image Classification in R. Springer Geography, Singapore.
- 5. Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., & Choler, P. (2017). Observed long-term greening of alpine vegetation—a case study in the French Alps. Environmental Research Letters, 12(11), 114006.
- 6. Choler, P. (2015). Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences, 12(12), 3885-3897.
- Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., ... & Zhang, X. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383.
- He, K. S., Bradley, B. A., Cord, A. F., Rocchini, D., Tuanmu, M. N., Schmidtlein, S., ... & Pettorelli, N. (2015). Will remote sensing shape the next generation of species distribution models?. Remote Sensing in Ecology and Conservation, 1(1), 4-18.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course is already included in the curriculum of many universities in the world.

• The content of this course is considered important by all research entities, as well as those focused on nature conservation and the management of natural resources

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Know concepts and methods from the domain of remote sensing and knowledge discovery	Test of theoretical knowledge	50%
10.5 Seminar/lab activities	Apply remote sensing techniques in real problems	Project implementation and presentation	50%
10.6Minimum performance			· · · · · · · · · · · · · · · · · · ·
		n report and for the final grade nowledge of concepts and work	

Date	Signature of course coordinator	Signature of seminar coordinator	
13.06.2024	CS II dr. Pavel Dan Turtureanu	CS II dr. Pavel Dan Turtureanu	
Date of approval	Signature of the head of department		
14.06.2024	Assoc. Prof.	Assoc. Prof. Beatrice Kelemen	