SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)		Biodiversity and climate change assessment						
(ro)	Evaluarea biodiversității și schimbărilor climatice							
2.2 Course coordinator		CS II dr. Turtureanu Pavel Dan						
2.3 Seminar coordinate	ninar coordinator CS II dr. Turtureanu Pavel Dan		l Dan					
2.4. Year of study	I	2.5 Semester	2	2.6.	Type of evaluation	E	2.7 Type of discipline Ele	ective
2.8 Code of the discipline BME1128			•					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					8
Evaluations					4
Other activities:					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Database, statistics
4.2. competencies	Programming skills

5. Conditions (if necessary)

5.1. for the course	 Videoprojector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

Professional competencies	C5.3 The ability to understand biodiversity concepts C5.4 Biodiversity assessment using multiple measures and indices C5.5 Climate change assessment using available datasets
Transversal competencies	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT2. Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups
Transvers	CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To learn concepts and specific techniques used to assess biodiversity, as well as climate change and its consequences
7.2 Specific objective of the discipline	• Students will learn concepts and gather various skills of integrating, structuring, storing/managing information on biodiversity and climate data for further assessments (particularly using R)

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction	Interactive exposure	
2. The concept of number of species	• Presentation	
3. The concept of beta-diversity	Explanation	
4. Multivariate investigation of biotic	Practical examples	
communities	Case-study discussions	
5. Functional diversity	,	
6. Relationships between biodiversity and		
environmental factors		
7. Biodiversity monitoring		
8. Terrestrial biomes and major climates		
9. Historical climate changes		
10. Ongoing climate changes		
11. Methods and techniques for climate change		
assessment		
12. Climate change effects on alpine biodiversity		

13-14. Students' presentations

Bibliography

- 1. Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Publishing, UK.
- 2. Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., ... & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology letters, 14(1), 19-28.
- 3. Turtureanu, P. D., Palpurina, S., Becker, T., Dolnik, C., Ruprecht, E., Sutcliffe, L. M., ... & Dengler, J. (2014). Scale-and taxon-dependent biodiversity patterns of dry grassland vegetation in Transylvania. Agriculture, Ecosystems & Environment, 182, 15-24.
- 4. Puşcaş, M., & Choler, P. (2012). A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(3), 168-178.
- 5. Puşcaş, M., Taberlet, P., & Choler, P. (2008). No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Diversity and Distributions, 14(5), 852-861.
- 6. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., ... & Grabherr, G. (2012). Recent plant diversity changes on Europe's mountain summits. Science, 336(6079), 353-355.
- 7. Garnier, E., Navas, M-A., Grigulis, K. Plant Functional Diversity. Organism traits, community structure and ecosystem properties. Oxford, UK.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Sources of biodiversity data	• Interactive exposure	
2. Numerical and statistical analysis of	Explanation	
biodiversity in R	• Conversation	
3. Sources of climate data	Didactical demonstration	
4-6. Working with climate and biodiversity data		
in R		
7. Students' project presentations		

Bibliography

- 8. Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Publishing, UK.
- 9. Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., ... & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology letters, 14(1), 19-28.
- 10. Turtureanu, P. D., Palpurina, S., Becker, T., Dolnik, C., Ruprecht, E., Sutcliffe, L. M., ... & Dengler, J. (2014). Scale-and taxon-dependent biodiversity patterns of dry grassland vegetation in Transylvania. Agriculture, Ecosystems & Environment, 182, 15-24.
- 11. Puşcaş, M., & Choler, P. (2012). A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(3), 168-178.
- 12. Puşcaş, M., Taberlet, P., & Choler, P. (2008). No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Diversity and Distributions, 14(5), 852-861.
- 13. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., ... & Grabherr, G. (2012). Recent plant diversity changes on Europe's mountain summits. Science, 336(6079), 353-355.

 Garnier, E., Navas, M-A., Grigulis, K. Plant Functional Diversity. Organism traits, community structure and ecosystem properties. Oxford, UK.
- 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is already included in the curriculum of many universities in the world.
- The content of this course is considered important by all research entities, as well as those focused on nature conservation and the management of natural resources

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Know concepts and	Test of theoretical	50%
	methods from the	knowledge	
	domain of biodiversity		
	and climate		
10.5 Seminar/lab activities	Apply biodiversity	Project implementation and	50%
	analysis and climate in	presentation	
	real problems		
10 0 1 1	. 1 1		

10.6Minimum performance standards

Each student must obtain at least 5 for the theoretical test and for the project presentation in order to receive the final grade. To obtain a grade of at least 5, the student must demonstrate mastery of the basic concepts of biodiversity and climate.

Date Signature of course coordinator Signature of seminar coordinator

13.06.2024 CS II dr. Pavel Dan Turtureanu CS II dr. Pavel Dan Turtureanu

Date of approval Signature of the head of department

14.06.2024 Assoc. Prof. Beatrice Kelemen