SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Transcriptomics			
(ro)			Transcriptomică			
2.2 Course coordinator			Assoc. Prof. Podar Dorina, PhD			
2.3 Seminar coordinator			Ic	osip Anda, PhD		
2.4. Year of study	Ι	2.5 Semester	2	2.6. Type of evaluation E 2.7 Type of discipline Opțional		
2.8 Code of the BME1127			· · · · ·			
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 of	course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 d	course	28	3.6 seminar/laboratory	28
Time allotment:					hours	
Learning using manual, course sup	oport, l	bibliography, cou	urse not	es		24
Additional documentation (in libraries, on electronic platforms, field documentation)					18	
Preparation for seminars/labs, homework, papers, portfolios and essays					16	
Tutorship					8	
Evaluations				4		
Other activities:						
3.7 Total individual study hours		70				•

3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	R programming for data analysis and visualisation		
	• (Fundamentals of programming)		
4.2. competencies	• Beginner programming skills (bash and R)		
5 Conditions (if nagagamy)			

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	• Computers (with Linux operating system), specific development
activities environment	
	High-performance compute cluster

6. Specific competencies acquired

Professional competencies	 Understanding how transcriptomes can be used to explore gene expression and function Applying general methods used for RNA-seq data analysis using case-study (reads quality control, reads mapping to reference genome, quantification, deferential expression analysis) RNA-seq data results visualization and understanding Visualization and interpretation of gene expression results of the case-study
Transversal competencies	 Development of empathic capacity through helping and collaborationg in small groups according to the principles and rules of professional ethics Acquiring oral presentation skills Development of communication in a widely used foreign language Development of abilities for knowledge exploration Data foraging skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• The aim of this course is to teach students how to perform gene expression analysis starting from raw RNA-seq data by using hands-on approach
7.2 Specific objective of the discipline	• At the end of the course, the students will be able to manipulate raw RNA-seq data and perform the following analysis: differential expression analysis, intersection analysis of differentially expressed genes, GO-term enrichment analysis, pathways analysis of differentially expressed genes. The students will also know how to visualize the results using specific charts and plots in R.

8. Content

		п
8.1 Course	Teaching methods	Remarks
1. Introduction to Transcriptomics. Experimental Design for	• Interactive exposure	
RNA-seq Data Analysis	Presentation	
2. Short Introduction to Major Current RNA-seq Technologies	• Explanation	
and Applications	Practical examples	
3. Reads Quality Control and Pre-processing	• Case-study	
4. Short Introduction to Genome Structure. RNA Types and	discussions	
Their Structure		
5. Aligning Reads to Reference Genome – Concepts,		
Algorithms and Tools		
6. Quantification of Gene Expression – Concepts and Tools		
7. – 9. RNA-seq Analysis Framework in R (Introduction to	1	
Packages Used for Differential Expression Analysis)		
10. Navigating Useful Transcriptomics Databases	1	
11. Data Visualization Tools for Gene Expression Analysis	1	
12. – 13. Functional Gene Annotation (GO-term, KEGG	1	
pathway, MapMan)		
14. Seminar Results Data Interpretation and Discussion	1	
Bibliography		
	· · · · · · · · · · · · · · · · · · ·	0 1

1. Alessandro Cellerino, M. S. (2018). Transcriptome Analysis: Introduction and Examples from the Neurosciences. Edizioni della Normale.

2. Bernot, A. (2004). Genome Transcriptome and Proteome Analysis. John Wa	Wiley & Sons.
---	---------------

3.	Brown,	T. A.	(2017).	Genomes 4. Garland Science; 4 edition.

3. Brown, I. A. (2017). Genomes 4. Garland Science; 4 edition	on.	
8.2 Seminar / laboratory	Teaching methods	Remarks
1 2. Getting Started. Establishing the Workflow and Pipeline	 Interactive exposure 	
3. Raw Reads Quality Check	 Explanation 	
4. Pre-processing: Genome Indexing	 Conversation 	
5. Reads Mapping to Reference Genome	 Didactical 	
6. Reads Counting	demonstration	
7. – 11 Differential Expression Analysis Using R: DEseq2	• Group work	
Package, PCA Plots, MA Plots, Sample Correlation Plots, Venn	• Hands-on case-study	
Diagrams, UpSet Plot		
12. – 13. Gene Ontology (GO-term) Enrichment Analysis		
14. Results Presentation and Discussion		

Bibliography

- 1. Eija Korpelainen, J. T. (2014). RNA-seq Data Analysis: A Practical Approach. Chapman and Hall/CRC; 1 edition .
- 2. Nalini Raghavachari, N. G.-R. (2019). Gene Expression Analysis: Methods and Protocols. Springer New York.
- 3. Yejun Wang, M.-a. S. (2018). Transcriptome Data Analysis: Methods and Protocols. Springer New York.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course exists in the curriculum of many universities in the world.

10. Evaluation

10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
		grade (%)		
Know concepts and methods	Oral presentation of results	30%		
for RNA-seq data analysis	obtained during the seminar			
Apply differential expression	Written protocol about the	70%		
analysis methods. Visualise	methods and results			
and interpret results.	obtained during the seminar			
10.6 Minimum performance standards				
Each student should obtain minimum 5 for the research report and for the final grade. In order to obtain				
the minimum grade 5, the student must demonstrate the mastery of the basic concepts of data				
preparation in order to analyse them.				
	Know concepts and methods for RNA-seq data analysis Apply differential expression analysis methods. Visualise and interpret results. nance standards ptain minimum 5 for the research the student must demonstrate the	Know concepts and methods for RNA-seq data analysisOral presentation of results obtained during the seminarApply differential expression analysis methods. Visualise and interpret results.Written protocol about the methods and results obtained during the seminarnance standardsState of the research report and for the final grade the student must demonstrate the mastery of the basic concepts		

Date	Signature of course coordinator	Signature of seminar coordinator
10.07.2024	Assoc. Prof. Dorina Podar	Anda Iosip, PhD

Date of approval	Signature of the head of department
16.07.2024	Assoc. Prof. Beatrice Kelemen