SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)		Databases for metacommunity ecology			
(ro)		Baze de date pentru ecologia metacomunităților			
2.2 Course coordinator		(CS II dr. Turtureanu Pavel Dan		
2.3 Seminar coordinator		(CS II dr. Turtureanu Pavel Dan		
2.4. Year of study 1 2.5 Semester		2	2.6. Type of evaluation E 2.7 Type of discipline Elective		
2.8 Code of the disciplin	ne	BME1126			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship				8	
Evaluations				4	
Other activities:					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• Statistic	es
4.2. competencies	• Program	nming skills in R

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

Professional competencies

- C5.3 Integration of ecological information into accessible, digital systems
- C5.4 Quality evaluation of ecological databases in terms of structure, functionality and extensibility
- **C5.5** The ability to restructure, extract and perform exploratory analyses on information derived from ecological databases

Transversal competencies

- **CT1.** Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics
- **CT2.** Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups
- **CT3.** Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To learn concepts and specific techniques to create, manage and perform exploratory analyses on databases for meta-community ecology
7.2 Specific objective of the discipline	Students will learn various techniques to integrate, structure, store/manage databases for further analyses using specific software (particularly R)

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction	Interactive exposure	
2. Sources of ecological data	Presentation	
3. Data types used in meta-community ecology	Explanation	
4. Formating and integrating ecological data	Practical examples	
5. Automatic data manipulation	Case-study discussions	
6-7. Numerical exploratory analyses		
8. Graphical exploratory analysis		
9. Ecological databases (abiotic)		
10. Species distribution databases		
11. Vegetation databases		
12. Ecological monitoring databases		
13-14. Students' presentations		

Bibliography

- 1. Spector, P. 2008. Data manipulation with R. Springer, Printforce, Netherlands.
- 2. Logan, M. 2010. Biostatistical Design and Analysis Using R. Wiley-Blackwell, India.
- 3. Wildi, O. 2017. Data analysis in vegetation ecology. CABI, UK.
- 4. Chang, W. 2019. R Graphics Cookbook. Practical recipes for visualizing data. O'Reilly, USA.

Quinn, G.P., Keough, M.J., Experimental I University Press, UK.	Design and Data Analysis for Biolo	gists. Cambridge
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Preparation and integration of ecological	Interactive exposure	
databases	• Explanation	
2. R programming language for ecological	Conversation	
databases	Didactical demonstration	
3. Numerical and graphical exploratory analysis		
in R		
4-6. Investigating ecological databases		
7. Students' project presentations		

Bibliography

- 1. Spector, P. 2008. Data manipulation with R. Springer, Printforce, Netherlands.
- 2. Logan, M. 2010. Biostatistical Design and Analysis Using R. Wiley-Blackwell, India.
- 3. Wildi, O. 2017. Data analysis in vegetation ecology. CABI, UK.
- 4. Chang, W. 2019. R Graphics Cookbook. Practical recipes for visualizing data. O'Reilly, USA. Quinn, G.P., Keough, M.J., Experimental Design and Data Analysis for Biologists. Cambridge University Press, UK.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is already included in the curriculum of many universities in the world.
- The content of this course is considered important by all research entities, as well as those focused on nature conservation and the management of natural resources

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Know concepts and	Test of theoretical	50%
	methods from the	knowledge	
	domain of ecological		
	and knowledge		
	discovery		
10.5 Seminar/lab activities	Apply ecological data	Project implementation	50%
	manipulating techniques	and presentation	
	in real problems		

10.6 Minimum performance standards

Each student must obtain at least 5 for the theoretical test and for the project presentation in order to receive the final grade. To obtain a grade of at least 5, the student must demonstrate mastery of the basic concepts of ecological data preparation for analysis.

Date Signature of course coordinator Signature of seminar coordinator
13.06.2024 CS II dr. Pavel Dan Turtureanu CS II dr. Pavel Dan Turtureanu

Date of approval **14.06.2024**

Signature of the head of department Assoc. Prof. Beatrice Kelemen