SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)		Applied biostatistics				
(ro)			Biostatistică aplicată			
2.2 Course coordinator		Assist. prof. dr. László Zoltán				
2.3 Seminar coordinator			Assist. prof. dr. László Zoltán			
2.4. Year of study	1	2.5	2 2.6. Type of C 2.7 Type of Mand			Mandatory
Semester			evaluation		discipline	
2.8. Code of the discipline BME1123						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)				16	
Preparation for seminars/labs, homework, papers, portfolios and essays				18	
Tutorship				8	
Evaluations				4	
Other activities:				-	

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Basic knowledge of statistical concepts and R
4.2. competencies	Average computer skills

5. Conditions (if necessary)

5.1. for the course	Multimedia projector, online meeting platform if necessary
	 Attendance of a minimum of 75% of the courses
5.2. for the seminar /lab	Computers, specific development environment
activities	 Attendance of a minimum of 90% of practical/ seminar classes

6. Specific competencies acquired

Professio nal compete ncies	 The ability to use advanced statistical models in data analyses Advanced skills in data analyses of biologic datasets Statistical analyses of bioinformatic datasets
Trans versal comp etenci es	• Using specific methods to analyse data, interpret results or solve theoretical and experimental assignments in daily work problems.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To enable students to perform statistical analysis of biological datasets with generalized linear and non-linear models.
7.2 Specific objective of the discipline	• Students will be able to understand and use concepts of generalised and mixture models in their work. They will be able to build generalized linear/non-linear models to solve different types of problems, to perform advanced exploratory data analysis.

8. Content

o. Content		•
8.1 Course	Teaching methods	Remarks
Introduction to study design, sampling and descriptive statistics.	 Interactive 	
Probability distributions: continuous and discrete, contingency tables,	exposure	
GOF tests	 Presentation 	
Least squares and maximum likelihood estimations	 Explanation 	
Regression and ANOVA design: the concept of the general linear model	Practical	
Linear and non-linear models for normally distributed outcome data.	examples	
Generalised linear and non-linear models	-	
Linear Mixed Effect models		
Stochastic processes: random walks		
Stochastic Processes: Markov chains		

Bibliography

- 1. Sokal, R. R. and Rohlf, F. J. (1995). *Biometry*: The principles and practice of statistics in biological research. Third Edition, WH Freeman and Company. New York. 850 pp.
- 2. Michael J. Crawley (2014): The R Book, 2nd Edition, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118448908
- 3. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer. DOI: 10.1007/978-0-387-87458-6
- 4. Jane M Horgan (2020) Probability with R, Second Edition. ISBN:9781119536949. DOI:10.1002/9781119536963
- 5. Ewens, W. J. and Grant, G. R. (2005) Statistical methods in bioinformatics: an introduction. New York: Springer. DOI: 10.1007/b137845

References (1, 2, 3) are available from the Library of Zoology (Clinicilor str. 5-7). References (4, 5) is an optional resource made available upon request.

8.2 Seminar / laboratory	Teaching methods	Remarks
Random number generators in R (sample, rnorm, rbinom, rpois etc.)	• Practical	
GOF tests, functions (chisq.test, goodfit, fitdist etc.)	demonstration	
Loops, iterations (apply functions), numeric optimalisations (optimize,	• Case-study	
mle2)	discussions	
Fitting linear models (lm) and analysis of variance models (aov):		
regression vs. ANOVA		
Fitting non-linear least squares (nls): logarithmic, exponential, power		
and polynomial models.		

Fitting generalised linear models and generalized least squares (glm,
gls): poisson, binomial, negative binomial and gamma error
distributions.
Fitting linear mixed-effects models and generalized linear mixed-effects
models (lme, glmer)
Random walks in R
Markov chain forecast example in R
Presentations for storytelling assignment

Bibliography

- 1. Sokal, R. R. and Rohlf, F. J. (1995). *Biometry*: The principles and practice of statistics in biological research. Third Edition, WH Freeman and Company. New York. 850 pp.
- 2. Michael J. Crawley (2014): The R Book, 2nd Edition, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118448908
- 3. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer. DOI: 10.1007/978-0-387-87458-6
- 4. Jane M Horgan (2020) Probability with R, Second Edition. ISBN:9781119536949. DOI:10.1002/9781119536963
- 5. Ewens, W. J. and Grant, G. R. (2005) Statistical methods in bioinformatics: an introduction. New York: Springer. DOI: 10.1007/b137845

References (1, 2, 3) are available from the Library of Zoology (Clinicilor str. 5-7). References (4, 5) is an optional resource made available upon request.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

100 E (tilutation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in	
			the grade (%)	
10.1 Course	Knowledge of concepts and methods	Written exam: statistical	100%	
	from the topics of the course	problems to solve in R		
10.2 Seminar/lab	Evaluation of a short individual project	within 2h		
activities				
10.2 Minimum nonformana estandardo				

10.3 Minimum performance standards

Each student should obtain minimum 5 at the written exam and oral colloquium. To obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.

Date **10.07.2024**

Signature of course coordinator Assist. Prof. dr. László Zoltán

Signature of seminar coordinator Assist. Prof. dr. László Zoltán

Date of approval **16.07.2024**

Signature of the head of department Assoc. Prof. Beatrice Kelemen