SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en) /			tructural a	nd function	al ge	nomics		
(ro)		G	Genomică structurală și funcțională					
2.2 Course coordinator		P	Prof. Banciu Horia Leonard, PhD					
2.3 Seminar coordinator		P	Prof. Banciu Horia Leonard, PhD					
2.4. Year of study	1 2.5 Semest	ter						
2.8. Code of the		B	ME1121					
discipline								
3. Total estimated time (h	ours/semeste	er of	didactic act	ivities)				
3.1 Hours per week		4	Of which:	3.2 course	2	3.3 seminar/lab	oratory	2
3.4 Total hours in the curr	Total hours in the curriculum 56 Of which: 3.5 course 28 3.6 seminar/laboratory			28				
Time allotment:				hours				
Learning using manual, course support, bibliography, course notes				24				
Additional documentation (in libraries, on electronic platforms, field documentation)				20				
Preparation for seminars/	abs, homew	ork, p	papers, port	folios and es	ssays			14
Tutorship				8				
Evaluations			4					
Other activities:				-				
3.7 Total individual study	hours		70					
3.8 Total hours per semester126								
3.9 Number of ECTS credits5								

4. Prerequisites (if necessary)

4.1. curriculum	Genetics, Biochemistry, Cell and molecular biology
4.2. competencies	Average computer skills

5. Conditions (if necessary)

5.1. for the course	• Beamer		
	Online meeting platform		
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,		
activities	• Computers, specific environment for developing and		
	implementing bioinformatic pipelines/tools		

6. Specific competencies acquired

sional	• Development of the ability to explain the cellular phenotype as a consequence of the multidimensional interaction between genes, gene expression and translation products in a certain context of cellular life;
ofes	• Ability to use bioinformatics strategies for analysis of genomes and genome function;
Pr	• Development of the capacity for analysis, synthesis and communication of specialized scientific information
20	• Acquiring the necessary information / complementary to the assimilation of the content of
sal cie	the Proteomics disciplines. Transcriptomics, Applied genomics in human health, Individual
sver	bioinformatics project.
Tran comp	• Using the specific concepts of genomic analysis to interpret the results or solve theoretical and experimental problems of functional genomics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• Describing the organization and structure of genomes in viruses,		
discipline	prokaryotes and eukaryotes, the modes of interaction between biological		
	components that generate the cell phenotype, as well as bioinformatics		
	tools for genomic analysis and genome functioning.		
7.2 Specific objective of the	•Knowledge of the main genomic sequencing technologies;		
discipline	•Knowledge of the general structure of viral, prokaryotic and eukaryotic		
	genomes;		
	•Understanding how an interaction between the components of a cellular		
	biological network (genes, transcripts, proteins), as well as how these		
	interactions contribute to the functioning of a cell:		
	•Using the main computational strategies for genomic analysis,		
	comparative and functional genomics.		

8. Content

8.1 Course	Teaching methods	Remarks
The concept of the genome. Definition of	Interactive exposure	
genomics. Genome projects and databases (2	• Presentation	
hours)	• Explanation	
High-throughput DNA sequencing technologies	Practical examples	
(6 hours)	• Case-study discussions	
Functional genomics technologies for RNA,	Ş	
protein and epigenetic modifications (6 hours).		
Structural and functional characteristics of viral,		
prokaryotic and eukaryotic (nuclear and		
organelles) genomes. Specialized databases and		
resources. (12 hours)		
Human genome structure and functions (2 hours)		

Bibliography

1. Caetano-Anolles G., Evolutionary genomics and systems biology. Hoboken, N. J. : Wiley-Blackwell, 2010.

2. Lesk A.M., Introduction to genomics. Oxford : Oxford University Press, 2017

- 3. Primrose S. B., Twyman R. M., Principles of gene manipulation and genomics. Malden, Mass ; Oxford ; Carlton, Victoria : Blackwell Publishing, 2006.
- 4. Xu S., Principles of statistical genomics. New York : Springer, 2013

All references are available in printed format at the libraries of the Faculty of Biology and Geology.

8.2 Seminar / laboratory	Teaching methods	Remarks
Bioinformatic tools for genome assembling	• Interactive exposure	
Bioinformatic tools for comparative genomics	• Explanation	
Bioinformatic tools for phylogenomics	Conversation	
Bioinformatic tools for functional genomics	• Practical demonstration	
Functional annotation of genes: tools and	• Case study	
databases	-	
Evaluation of a genomic or functional genomic	Evaluation	
short individual project		

Bibliography

- 1. Hunt S., Functional genomics : a practical approach. Oxford : Oxford University Press, 2002.
- 2. Electronic resources, databases and bioinformatics tools available online

Reference (1) is available in printed format at the libraries of the Faculty of Biology and Geology.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is present in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the grade	
		methods	(%)	
10.4 Course	Knowledge of concepts and	Written exam	50%	
	methods from the topics of the	(combined test)		
	course			
10.5 Seminar/lab	Evaluation of a genomic or	Oral colloquium	50%	
activities	functional genomic short			
individual project				
10.6 Minimum performance standards				
Each student should obtain minimum grade of 5 (five) for the written exam and oral colloquium. To				
obtain the minimum grade 5 (five), the student must demonstrate the mastery of the basic concepts				
described during the course and practicum classes.				

Date	Signature of course coordinator	Signature of seminar coordinator
10.07.2024	Prof. Horia Banciu, PhD	Prof. Horia Banciu, PhD

Date of approval **16.07.2024**

Signature of the head of department **Assoc. Prof. Beatrice Kelemen, PhD**