SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Command line scripting				
(ro)		Codarea liniilor de comandă					
2.2 Course coordinator			Dr. Dorin Mirel Popescu				
			Andrei Alexsson				
2.3 Seminar coordinator Dr. Dorin Mirel Popescu							
			A	ndrei Alexsson			
2.4. Year of study 1 2.5 Semester I 2.6. Type of evaluation E 2.7 Type of discipline El				Elective			
2.8 Code of the discip	oline	BME1116					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course supp	ort, bi	ibliography, course not	es		34
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					10
Evaluations					4
Other activities:					-
3.7 Total individual study hours		98			•
3.8 Total hours per semester		154			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Basic algebra calculation skills
4.2. competencies	Average programming skills

6

5. Conditions (if necessary)

5.1. for the course	• Beamer
	Online meeting platform
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,
activities	Computers, specific development environment

6. Specific competencies acquired

Professional competencies	 Ability to navigate and use the command line in a Linux environment for accessing and analyzing biological data efficiently. Skills in executing commands, managing files, and automating tasks using scripts. Ability to manipulate biological data files for preparing data for further analysis and visualization of large-scale genomic datasets. Skills in writing and executing BASH scripts to automate data processing tasks and to increase workflow efficiency through improved reproducibility and scalability in data analysis.
Transversal competencies	 Capacity to analyze complex biological problems, break them down into smaller components, and devise effective solutions through means of logical reasoning, creativity, and adaptability Ability to work effectively in multidisciplinary teams, share and document scripts and workflows, and communicate findings clearly to both technical and non-technical audience.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To train students on practical skills for efficiently working with biological data by introducing them to Linux and command-line basics, teaching scripting and automation, and demonstrating how to manipulate biological data files using study cases
7.2 Specific objective of the discipline	 To familiarize students with the Linux operating system, show them how to navigate the command line, execute basic and advanced commands, and understand the file system structure To train students in writing and executing simple Bash scripts To provide hands-on exercises using Linux commands to handle biological data files including data export into other environments for further analysis. To apply command-line skills on real biological data examples and specific research contexts

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to Bash and the Command Line	Presentation	
(Basic Shell Commands)	Explanation	
Variables, Arrays and Parameters	Conceptualized-lerning	
Shell Scripting Basics - creating and running	Active learning through	
shell scripts	case-study discussions	
Control Structures (conditional statements and	5	
looping)		
File Permissions and Ownership		
Functions in Bash		
Working with Text Files (awk, vim, sed)		
Regular expressions		
Input and output redirection, Error handling and		
debugging		
Managing processes (ps, top, kill, bg, fg, etc)		
Integrating bash with other programming		
languages		
Running bioinformatics tools in bash		
Bibliography		
	1 1 1 1 1 1 0 1	1/ 1/1 1 1 / 1

- 1. Bash Reference Manual, freely available at <u>https://www.gnu.org/software/bash/manual/bash.html</u>
- Linux Handbook, <u>https://linuxhandbook.com/</u>
 The Bash Guide, freely available at <u>https://guide.bash.academy/</u>

8.2 Seminar / laboratory	Teaching methods	Remarks
Real-world applications and case studies	 Interactive duiscussion 	
Team-work or individual assignments focused on	• Explanation	
creating scripts for various bioinformatic	Conversation	
applications (data retrieval from databases,	• Project-based learning	
alignments, etc.)	Practical demonstration	
Students project presentations, discussions and		
conclusions		
Final evaluation		

Bibliography

- 1. Printed hands-on provided by the trainers
- 2. Bash Shell Scripting Practice Exercises, available at: https://linuxhandbook.com/practice/bash/
- 3. w3resource's Bash Scripting Exercises, available at: <u>https://www.w3resource.com/bash-script-</u>exercises/index.php

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is present in the curriculum of many universities in the world.
- The course enables the developing fundamental skills in efficient handling and analysis of largescale biological data, automating repetitive tasks and enhancing reproducibility through scripting. .

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the $\frac{10.3}{100}$
10.1. Course	Know concepts and methods from the topics	Written exam	grade (%) 50%
	of the course		
10.2. Seminar/lab activities	Apply tools and concepts of scripting in real-life problems	Solving an individual assignment and presenting/explaining the solutions of the assigned project.	50%

Each student should obtain a minimal mark of 5 (five) for the written exam and for the individual assignment. To obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and seminars/practical classes, respectively.

Date Signature of course coordinator

Signature of seminar coordinator

22.07.2024

Dr. Dorin Mirel Popescu

Andrei Alexsson

Andrei Alexsson

Dr. Dorin Mirel Popescu

Date of approval **23.07.2024**

Signature of the head of department Assoc. Prof. Beatrice Kelemen, PhD