SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en) Cell and molecular biology						
(ro)			Biologie celulară și moleculară			
2.2 Course coordinator		Lecturer Ioana Drăghici, PhD			hD	
2.3 Seminar coordinator		L	Lecturer Ioana Drăghici, PhD			
2.4. Year of study 1 2.5 Semester I 2.6. Type of evaluation E 2.7 Type of discipline		2.7 Type of discipline Elective				
2.8 Code of the discipline BME1114						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					34
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays				20	
Tutorship					10
Evaluations					4
Other activities:					-

3.7 Total individual study hours	98
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Basic algebra calculation skills
4.2. competencies	 Average programming skills

5. Conditions (if necessary)

5.1. for the course	Beamer
	Online meeting platform
5.2. for the seminar /lab	Attendance of a minimum of 90% of practical/ seminar classes,
activities	 Laboratory room with molecular cell biology dedicated equipment;
	Computers, specific development environment

6. Specific competencies acquired

Professional competencies	 Ability to explain basic biological processes given the relationship that exists between cell structure and function Ability to use appropriate fundamental methods for collecting, organizing, and analyzing molecular data Advanced skills to translate a biological question into the design of an experiment
Transversal competencies	 To acquire biological knowledge from the cellular to the organismal level, with an interdisciplinary vision and special emphasis on computational applications To manage and exploit specific concepts related to the molecular/cellular level of biological organization in new contexts

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To demonstrate knowledge and understanding of the structural and functional aspects of eukaryotic cells and their subcellular constituents and to learn basic principles regarding how the genome orchestrates cell behavior (synthesis of macromolecules)
7.2 Specific objective of the discipline	 Describe different types of cells, especially eukaryotic cells; functional and structural similarities and dissimilarities between them Describe the structure, function and dynamics of important
	 biomolecules, organelles and other cellular components Understand fundamental facts about cellular processes such as intracellular transports, cellular growth and division, and energy transformation
	Explain how the growth, development, and behavior of organisms are activated through the expression of genetic information in context
	Gain insight into the relevance of cell biological research to modern biology and medical science

8. Content

8.1 Course	Teaching methods	Remarks
Cell as a basic unit of life. Cell diversity.	Interactive exposure	
Origin of life and the cells. Cell organization	• Presentation	
of prokaryotic and eukaryotic cells.	Explanation	
Membrane structure. Transport across cell	Practical examples	
membranes.	Case-study discussions	
Intracellular compartments and protein	j	
transport.		
Energy generation in mitochondria and		
chloroplasts.		
The cytoskeleton and cell movement.		
Cell cycle, cell division - mitosis and meiosis		
Organization of the genome: DNA and		
chromosomes		

DNA replication	
Flow of genetic information, from DNA to	
protein: Transcription and Translation	

Bibliography

- 1. Alberts, B., Bray, D., & Hopkin, K. (2014). Essential cell biology. New York: Garland Science.
- 2. Campbell, N. A., Reece, J. B., & Urry, L. A. (2015). Biology: A global approach. Boston, MA: Pearson
- 3. Watson, J. D., Baker, T. A., & Bell, S. P. (2008). Molecular biology of the gene. Boston: Pearson.
- 4. Lodish, H. F., Berk, A., & Kaiser, C. A. (2013). Molecular cell biology. New York: W.H. Freeman and Company.
- 5. Cooper, G. M., & Hausman, R. E. (2009). The cell: A molecular approach. Washington, D.C: ASM Press.
- 6. Pierce, B. A. (2017). Genetics: A conceptual approach. New York: Macmillan Education All references are available in hard print format at the libraries of the Faculty of Biology and Geology.

8.2 Seminar / laboratory	Teaching methods	Remarks
Practical work: Visualizing Cells (Light	• Interactive exposure	
Microscope)	Explanation	
Team-work project: Molecular biology of some	Conversation	
important pathogens and/or particular human	Didactical demonstration	
disease		
Seminar: Mutations (classification, molecular		
basis, repair, phenotypic consequence)		
Seminar: Unique features of organelle DNA		
(mitochondrial genome and chloroplast genome)		
Practical work: Isolation of genomic DNA from		
different cell types/environments		
Practical work: DNA quantification (UV		
absorbance, Agarose gel electrophoresis)		
Students project presentations, reflections and		
conclusions		
Final evaluation		

Bibliography

- 1. Alberts, B., Johnson, A., Lewis, J., Wilson, J. H., & Hunt, T. (2015). Molecular biology of the cell. Abingdon: Garland Science, Taylor & Francis Group.
- 2. Ausubel et al. (2003). Current Protocols in Molecular Biology. John Wiley & Sons Inc.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is present in the curriculum of many universities in the world.
- The course allows for developing fundamental skills in molecular biology theories and laboratory techniques for generating, processing, and understanding biological information needed for advanced bioinformatics analysis in pharmaceutical/biotechnology industries or in the academic and medical research workforce.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.1 Course	Know concepts and	Written exam	50%
	methods from the topics		
	of the course		

10.2 Seminar/lab activities	Apply tools and	Team-work project	50%
	concepts of molecular	(implementation and	
	cell biology in real-life	presentation)	
	problems	Short written colloquium	
10.3Minimum performance standards			
Each student should obtain minimum 5 for the written exam and for the final grade. In order to obtain the			
minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the			

Date Signature of course coordinator Signature of seminar coordinator

10.07.2024 Lect. Dr. Ioana Drăghici Lect. Dr. Ioana Drăghici

Date of approval Signature of the head of department

16.04.2024 Assoc. Prof. Beatrice Kelemen, PhD

course.