SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en) Biological networks and systems							
(ro)			Rețele biologice și sistemice				
2.2 Course coordinator			Assist. prof. dr. László Zoltán				
2.3 Seminar coordinator			Assist. prof. dr. László Zoltán				
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	E	2.7 Type of discipline	Elective
2.8. Code of the discipline BMR1138					•		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 cours	e 2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 cours	e 28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					8
Evaluations					4
Other activities:					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Average computer skills

5. Conditions (if necessary)

5.1. for the course	Beamer
	Online meeting platform
5.2. for the seminar /lab	 Attendance of a minimum of 90% of practical/ seminar classes,
activities	 Computers, specific development environment

6. Specific competencies acquired

Professional competencies	 Develop an understanding of how networks control biological processes and how they evolve in response to external factors as well as evolutionary processes. Descriptions of the algorithms and methods by which biological networks can be studied, with the use of computer code.
Transversal competencies	 Efficient conduct of activities organized in an interdisciplinary group Using the specific concepts of network biology to interpret the results or solve theoretical and experimental problems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Description of analytical methods and downstream data processing, integration and visualization regarding biological networks
7.2 Specific objective of the discipline	 Description of main techniques, data acquisition and processing strategies Understanding the principles underlying the biological networks Knowledge of main types of biological networks Applying tools for data processing and visualization regarding biological networks

8. Content

8.1 Course	Teaching methods	Remarks
Introduction	 Interactive exposure 	
Graph theory	• Presentation	
Random and non – random networks	 Explanation 	
Different network types and their use in biology	 Practical examples 	
Evolving networks and modells	 Case-study discussions 	
Degree correlations	ř	
Network robustness and stability		
Communities as networks		
Spreading phenomena		

Bibliography

- 1. Barabási, A. L. (2013). Network science. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 371, Issue 1987). https://doi.org/10.1098/rsta.2012.0375
- 2. May, R. M. (1972). Will a large complex system be stable? Nature, 238(5364). https://doi.org/10.1038/238413a0
- 3. May, R. M. (2001). Stability and Complexity in Model Ecosystems. In The Journal of Animal Ecology (Vol. 44, Issue 3). Princeton University Press. https://doi.org/10.1515/9780691206912
- 4. Newman, M. E. J., Barabási, A. L., & Watts, D. J. (2011). The structure and dynamics of networks. In The Structure and Dynamics of Networks (Vol. 9781400841356). https://doi.org/10.1007/s10955-006-9267-8
- 5. PIMM, S. L., & LAWTON, J. H. (1978). On feeding on more than one trophic level. Nature, 275(5680), 542–544. https://doi.org/10.1038/275542a0

8.2 Seminar / laboratory	Teaching methods	Remarks
Introduction to R	• Interactive exposure	
Network generation using R	Explanation	
Network topology and metrics	Conversation	
Network dynamics	Practical demonstration	
Lotka-Volterra models		
Simulations, stability and complexity		

Network visualization

Bibliography

- 1. The R Project for Statistical Computing [http://www.R-project.org/
- 2. Almende B.V. and Contributors, Benoit Thieurmel and Titouan Robert (2021). visNetwork: Network Visualization using 'vis.js' Library. R package version 2.1.0. https://CRAN.R-project.org/package=visNetwork
- 3. Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. https://igraph.org
- 4. Dormann, C.F., Fruend, J., Bluethgen, N. & Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24.
- 5. Dormann, C.F., Gruber B. & Fruend, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. R news Vol 8/2, 8 11.
- 6. Dormann, C.F. (2011). How to be a specialist? Quantifying specialisation in pollination networks. Network Biology 1, 1 20.
- 7. Thomas Lin Pedersen (2021). ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. R package version 2.0.5. https://CRAN.R-project.org/package=ggraph

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
		grade (%)
Knowledge of concepts	Written exam (combined	50%
and methods from the	test)	
topics of the course		
Evaluation of a short	Oral colloquium	50%
individual project	-	
	Knowledge of concepts and methods from the topics of the course Evaluation of a short	Knowledge of concepts and methods from the topics of the course Evaluation of a short Written exam (combined test) Oral colloquium

10.6Minimum performance standards

Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.

Date Signature of course coordinator Signature of seminar coordinator

14.01.2022 Assist. Prof. dr. László Zoltán Assist. Prof. dr. László Zoltán

Date of approval Signature of the head of department

18.01.2022 Assoc. Prof. Beatrice Kelemen