SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)		Plant genomics and transcriptomics					
(ro)		Genomica și transcriptomica plantelor					
2.2 Course coordinator		С	Conf. Dr. Podar Dorina				
2.3 Seminar coordin	ator		С	onf. Dr. Podar Dorina	L		
2.4. Year of study	2	2.5 Semester	2	2.6. Type of evaluation	С	2.7 Type of discipline	Opțion
							al
2.8 Code of the disc	ipline	BME1133					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 c	course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 c	course	28	3.6 seminar/laboratory	28
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes					24	
Additional documentation (in libraries, on electronic platforms, field documentation)					18	
Preparation for seminars/labs, homework, papers, portfolios and essays					16	
Tutorship					8	
Evaluations					4	
Other activities:						
3.7 Total individual study hours 70					1	

3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	R programming for data analysis and visualisation
	Genomics and functional genomics
	• (Fundamentals of programming)
4.2. competencies	• Beginner programming skills (bash and R)

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

Professional competencies	 Understand key steps in plant genome and transcriptome assembly Understand basic methods used in plant comparative genomics Apply plant genome and transcriptome anaylis methods: differential expression analysis, building and visualizing transcription factor networks, inferring orthology and paralogy, building and visualising gene trees Using online databases, tools and resources for plant genomes and transcriptomes exploration: Plant genome databases, Genome browsers, Plant expression tools, Genomic repositories and stress-related databases, Biotic stress databases
Transversal competencies	 Development of empathic capacity through helping and collaborationg in small groups Oral presentation skills Development of communication in a widely used foreign language Development of abilities for knowledge exploration Data foraging skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	•	The aim of the course is to make students become familiar with genomics and transcriptomics advances in plant sciences
7.2 Specific objective of the discipline	•	The students will learn independently using hands-on approach various plant genomic and transcriptomic data analysis methods and techniques as well as explore online databases, tools and resources for plant genomes and transcriptomes.

8. Content

8.1 Course	Teaching methods	Remarks
1 2. Introduction to Plant Genomics. Why Are Plant	• Interactive exposure	
Genomes Special?	Presentation	
3. Current Sequencing Technologies Used for Plant Genomics	• Explanation	
and Transcriptomics	Practical examples	
4. Brief Introduction to Algorithms Used in Genomic Data	• Case-study discussions	
Science		
5 6. Genome Assembly and Annotation Steps. Confounding		
Factors for Plant Genome Assembly		
7 9. Exploring Plant Genomes: GWAS (Genome Wide		
Association Studies), WGA (Whole Genome Alignment),		
Repetitive Elements, Orthology and Paralogy.		
10. Introduction to Plant Transcriptomics		
11. De novo Transcriptome Assembly Steps		
12 13. Exploring Plant Transcriptomes: Differential Gene		
Expression Analysis, Isoformes and Splice Variant Analysis,		
Transcription Factor Network Analysis, Analysing Different		
Types of RNAs		
14. The Importance of Plant Genomics and Transcriptomics in		
a Changing Climate. Exploring Genomic Repositories and		
Stress-related Databases.		

Bibliography

- 1. (Poltronieri et. al, 2013) P. Poltronieri, N. Burbulis and C. Fogher, From Plant Genomics to Plant Biotechnology. Woodhead Publishing Series in Biomedicine. Springer International Publishing.
- 2. (Edwards et. al, 2016) Edwards, D., Batley, J., Plant Genomics and Climate Change

- (Hakeem et al., 2019) Hakeem, K. R., Shaik, N. A., Banaganapalli, B., and Elango, R. Essentials of bioinformatics, volume III: In silico life sciences: Agriculture. Springer International Publishing.
- 4. (Kim et. al., 2019) Kim, J. H., Genome Data Analysis. Springer International Publishing.
- 5. (Anisimova et al., 2019) Editor, M. A. Evolutionary genomics statistical and computational methods, second edition, Methods in Molecular Biology.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Exploring Genome Visualisation and Plant Expression Data	• Interactive exposure	
Tools	• Explanation	
2. Running Differential Expression analysis on case-study	Conversation	
3. Functional annotation and transcription factors identification	Didactical demonstration	
of differentially expresed genes (obtained in previous step)	Hands-on case-study	
using plant transcription factor databases		
4 7. Transcription factor network analysis. Transcription		
factor motif search and target genes identification		
8. Using online gene network exploration tools		
9 12. Finding orthogroups. Exploring gene duplications and		
gene losses across different plant species		
13. Building and visualizing orthogroup trees for genes of		
interest (i.e. transcription factors identified in earlier analysis)		
14. Results interpretation and discussion		

Bibliography

- 1. (Armstrong et al., 2018) Armstrong, J., Fiddes, I. T., Diekhans, M., and Paten, B. (2018). Wholegenome alignment and comparative annotation.
- 2. (Basantani et al., 2017) Basantani, M. K., Gupta, D., Mehrotra, R., Mehrotra, S., Vaish, S., and Singh, A. (2017). An update on bioinformatics resources for plant genomics research.
- 3. (Claros et al., 2012) Claros, M. G., Bautista, R., Guerrero-Fern'andez, D., Benzerki, H., Seoane, P., and Fern'andez-Pozo, N. (2012). Why assembling plant genome sequences is so challenging.
- 4. (Giani et al., 2020) Giani, A. M., Gallo, G. R., Gianfranceschi, L., and Formenti, G. (2020). Long walk to genomics: History and current approaches to genome sequencing and assembly.
- (Jung et al., 2020) Jung, H., Ventura, T., Chung, J. S., Kim, W. J., Nam, B. H., Kong, H. J., Kim, Y. O., Jeon, M. S., and Eyun, S. I. (2020). Twelve quick steps for genome assembly and annotation in the classroom. PLoS Computational Biology, 16.
- 6. (Soltis and Soltis, 2021) Soltis, P. S. and Soltis, D. E. (2021). Plant genomes: Markers of evolutionary history and drivers of evolutionary change. PLANTS, PEOPLE, PLANET, 3:74–82
- 7. (Amarasinghe et al., 2020) Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., and Gouil, Q. (2020). Opportunities and challenges in longread sequencing data analysis.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course exists in the curriculum of many universities in the world.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Know concepts and methods for genome as	Written essay on one of the topics discussed during the	50%			
	well as transcriptome assembly and exploration	course				
10.5 Seminar/lab activities	Apply genome and transcriptome analysis methods	Oral presentation of workflow and results obtained during seminar	50%			
10.6Minimum performance standards						
Each student should obtain minimum 5 for the research report and for the final grade. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts of data preparation						

in order to analyse them.

Date	Signature of course coordinator	Signature of seminar coordinator
16.01.2023	Assoc. Prof. Dorina Podar	Assoc. Prof. Dorina Podar

Date of approval

Signature of the head of department

20.01.2023

Assoc. Prof. Beatrice Kelemen