SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Applied Genomics in human health												
(ro)			Genomică aplicată în sănătatea umană												
2.2 Course coordinator			Sef lucr. Dr. Cruceriu Daniel												
		Dr. Armean Irina													
2.3 Seminar coordinator			Sef lucr. Dr. Cruceriu Daniel												
			D	Dr. A	۱rı	mea	n I	rina							
2.4. Year of study	2	2.5 Semester	2	2.6	. T	`ype	of	evalu	ation	С	2.7	Type of	of dis	cipline	Elective
2.8 Code of the discip	oline	BME1132		1											

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28	
Time allotment:						
Learning using manual, course su	pport, l	oibliography, course n	otes		24	
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays					16	
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours		70				
3.8 Total hours per semester		126				

3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Cell and molecular biology	
	Genetics, genomics and functional genomics	
	Biostatistics	
	Fundamentals of programming	
4.2. competencies	Interpretation of cell and molecular biology data	
	• Beginner programming skills (bash and R)	

5. Conditions (if necessary)

5.1. for the course	 Video projector (for on-site activities)/ MS Teams or ZOOM online platforms Blackboard (on site)/ graphic pad (for online communication)
5.2. for the seminar /lab activities	• Video projector (for on-site activities)/ MS Teams or ZOOM online platforms

• Blackboard (on site)/ graphic pad (for online communication)
• PC desktops or notebooks (at least 1 unit per 3 users or,
alternatively one unit per each student if online activities are
planned)
• Attendance of a minimum 90% of practical work / seminar is
prerequisite for admission at written exam

6. Specific competencies acquired

	seem	te competencies acquired
		• To interpret the raw data obtained from the analyzes and techniques used in molecular
le	es	diagnosis in oncology.
oni	nci	• To interpret the raw data obtained from the analyzes and techniques used in research in the
essi	ete	field of oncobiology, oncogenetics, oncogenomics.
rof	competencies	• To interpret data processed from the specialized literature in the field of oncobiology,
Р	CO	oncogenetics, oncogenomics.
		• To use biological databases dedicated to various human pathologies.
	es	• To use the theoretical notions in solving practical problems in molecular diagnosis and
rsal	nci	research in the field of oncobiology, oncogenetics, oncogenomics and other human pathologies
Transversal	competencies	• To carry out the transfer of information for the understanding of the human genome, in general,
an.	du	and oncogenomics, in particular, by taking over and using knowledge from related fields:
Ţ	c 0	cytology, genetics, molecular biology, biostatistics and bioinformatics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Knowledge of the main technologies of human genome sequencing, biological databases dedicated to human pathologies and the main approaches in the field of oncobiology, oncogenetics and oncogenomics both in the clinic (laboratory for the molecular diagnosis of cancer) and in research.
7.2 Specific objective of the discipline	 To comparatively explain (normal cell-tumor cell) the 6 characteristics of cancer from a cellular and molecular perspective. To explain the principles of genetic and genomic testing (diagnosis and prognosis) in cancer. To explain the principles of personalized medicine and targeted cancer therapies. To interpret experimental and clinical data obtained by molecular biology methods specific to oncobiology, oncogenetics and oncogenomics. To understand the principles of mass sequencing technologies applied to the human genome; To use biological databases dedicated to various human pathologies.

8. Content		
8.1 Course	Teaching methods	Remarks

1. Introduction to "Applied Genomics in Human Health":	• Interactive exposure	
syllabus and educational objectives; Cancer: definitions,	Presentation	
epidemiology and current status.	Explanation	
2. Introduction to oncogenomics: the central dogma of cell	Practical examples	
biology; introduction to cellular signalling.	Case-study discussions	
3. Characteristics of cancer: 1. Unlimited replication potential;		
2. Loss of the ability to regulate the cell cycle (tumour		
suppressor genes in cancer) 3. Induction of proliferation		
(oncogenes in cancer).		
4. Characteristics of cancer: 4. Resistance to apoptosis. 5.		
Promoting of angiogenesis; 6. Invasive and metastatic capacity.		
5. Principles of genetic testing of cancer in current clinical		
practice (diagnosis and prognosis).		
6. Targeted cancer therapy and personalized medicine in		
current clinical practice: principles; small molecule drugs and		
monoclonal antibodies.		
7. Targeted cancer therapy and personalized medicine in	-	
current clinical practice: examples from the clinic (hormone		
therapies; tyrosine kinase inhibitors; angiogenic inhibitors; immunotherapy).		
	-	
8. Genomic cancer testing: principles	-	
9. Identifying mutations in cancer: sequencing I.	-	
10. Identifying mutations in cancer: sequencing II.	-	
11. Identifying epigenetic changes in cancer: microarray		
technique I.	-	
12. Identifying epigenetic changes in cancer: microarray		
technique II.	-	
13. DNA sequencing and large-scale sequencing of the human		
genome. Databases for human DNA variability	-	
14. Case studies (LRRK2 and Parkinson's) and databases used		
(gnomAD, Ensembl Variation, ClinVar).		
Bibliography		
1. Course notes		
2. Weinberg RA, 2013. The Biology of Cancer Second Edition		
3. Pecorino, L, 2005. Molecular Biology of Cancer, Oxford Ur		1
4. Hanahan D, Weinberg RA, 2000. The hallmarks of cancer. (((7)
5. Hanahan D, Weinberg RA, 2011. Hallmarks of cancer: the r	-	
6. Kreso A, Dick JE, 2014. Evolution of the cancer stem cell m		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction to the seminars/laboratories on Applied	• Interactive exposure	
Genomics in Human Health. Syllabus and educational	• Problem-solving activities	
objectives.	• Hands-on case-study	
2. The Cancer Genome Atlas Database (TCGA): operating	• Team work activities	
principles and working interface.	-	
3. The Cancer Genome Atlas Database (TCGA): applications.	-	
4. Polymerase chain reaction (PCR): identification of RAS		
gene mutations in colorectal cancer. RT-PCR: identification		
of BCR-ABL fusions in leukemias (interpretation of raw		
data in clinical diagnosis)	4	
5. qPCR: identification of EGFR gene mutations in lung cancer		
(interpretation of raw data in clinical diagnosis)	4	
6. RT-qPCR: determination of gene expression levels in		
cancer. (interpretation of raw data)		

7. Sequencing I: Characterization of the molecular signature of	
blood exosomes in patients with metastatic breast cancer	
(interpretation of raw data)	
8. Sequencing II: Characterization of the molecular signature	
of blood exosomes in patients with metastatic breast cancer	
(interpretation of raw data)	
9. Microarray I technique: exploring the mechanisms of	
intrinsic resistance to radiochemotherapy in cervical cancer	
(interpretation of raw data (GeneSpring / R)	
10. Microarray II technique: exploring the mechanisms of	
intrinsic resistance to radiochemotherapy in cervical cancer	
(interpretation of raw data (GeneSpring / R)	
11-12. Analysis of data from the literature. Oral presentations.	
13-14. Exercises for analyzing the data of human genetic	
variants from the sequencing of human genomes / exomes	
using Ensemble Variant Effect Predictor	
D'11' 1	

Bibliography

 McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., ... & Cunningham, F. (2016). The ensembl variant effect predictor. Genome biology, 17(1), 1-14. <u>https://doi.org/10.1186/s13059-016-0974-4</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course has a similar content to courses from other European universities, being constantly updated and adapted to the level of training of students.
- The course aims to train the skills in the field of human genomics with focus on oncobiology, oncogenetics and oncogenomics in accordance with the European syllabus for the training of specialists in the medical laboratory (EC4 European Syllabus for Post-Graduate Training in Clinical Chemistry and Laboratory Medicine).
- The course contents are constructed taking into account the responsibilities of the biologist / biochemist in a medical laboratory for molecular diagnosis of cancer and research units in oncobiology / oncogenetics / oncogenomics, in accordance with the job description.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of informational content	Written colloquium	60%
	Ability to use information in a new context		
	Ability to interpret molecular diagnostic analyzes and		
	experimental raw / processed data		
10.5 Seminar/lab activities	Ability to interpret cellular and molecular biology data in the field	Oral presentation	15%
	Individual performance during laboratory/ seminar activities	Evaluation of the results obtained in workshops and	25%
		homework	
10.6Minimum performance	e standards		
Knowledge of 50% of the r	naterial contained in the course.		

Knowledge of 50% of	the material from the practical works.		
Date	Signature of course coordinator	Signature of seminar coordinator	
16.01.2023	Lect. Dr. Cruceriu Daniel Lect. Dr. Cruceriu Daniel		
	Dr. Armean Irina	Dr. Armean Irina	
Date of approval	Signature	of the head of department	
20.01.2023	Assoc. Prof. Beatrice Kelemen		