SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)		Databases for metacommunity ecology			
(ro)		Baze de date pentru ecologia metacomunităților			
2.2 Course coordinator		(CS II dr. Turtureanu Pavel Dan		
2.3 Seminar coordinator		CS II dr. Turtureanu Pavel Dan			
2.4. Year of study12.5 Semester		2	2 2.6. Type of evaluation C 2.7 Type of discipline Elective		
2.8 Code of the discipline BME1126				· · · ·	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 cours	se 2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 cours	se 28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					8
Evaluations					4
Other activities:					
3.7 Total individual study hours 70					

5.7 Total mulvidual study nouis	/0
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Statistics
4.2. competencies	Programming skills in R

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

Integration of ecological information into accessible, digital systems Quality evaluation of ecological databases in terms of structure, functionality and
sibility
The ability to restructure, extract and perform exploratory analyses on information derived ecological databases
Application of efficient work rules and responsible attitudes towards the scientific in, for the creative exploitation of one's own potential according to the principles and of professional ethics Efficient conduct of activities organized in an interdisciplinary group and development of hic capacity of interpersonal communication, networking and collaboration with diverse s Use of efficient methods and techniques for learning, information, research and opment of abilities for knowledge exploitation, for adapting to the needs of a dynamic

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	•	To learn concepts and specific techniques to create, manage and perform exploratory analyses on databases for meta-community ecology
7.2 Specific objective of the discipline	•	Students will learn various techniques to integrate, structure, store/manage databases for further analyses using specific software (particularly R)

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction	Interactive exposure	
2. Sources of ecological data	Presentation	
3. Data types used in meta-community ecology	Explanation	
4. Formating and integrating ecological data	Practical examples	
5. Automatic data manipulation	Case-study discussions	
6-7. Numerical exploratory analysis		
8. Graphical exploratory analysis		
9. Vegetation databases		
10. Ecological databases		
11. Species distribution databases		
12. Ecological monitoring databases		
13-14. Students' presentations		

Bibliography

- 1. Spector, P. 2008. Data manipulation with R. Springer, Printforce, Netherlands.
- 2. Logan, M. 2010. Biostatistical Design and Analysis Using R. Wiley-Blackwell, India.
- 3. Wildi, O. 2017. Data analysis in vegetation ecology. CABI, UK.
- 4. Chang, W. 2019. R Graphics Cookbook. Practical recipes for visualizing data. O'Reilly, USA.

Quinn, G.P., Keough, M.J., Experimental Design and Data Analysis for Biologists. Cambridge University Press, UK.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Preparation and integration of ecological	• Interactive exposure	
databases	• Explanation	
2. R programming language for ecological	Conversation	
databases	Didactical demonstration	
3. Numerical and graphical exploratory analysis		
4-6. Investigating ecological databases		
7. Students' project presentations		

Bibliography

- 1. Spector, P. 2008. Data manipulation with R. Springer, Printforce, Netherlands.
- 2. Logan, M. 2010. Biostatistical Design and Analysis Using R. Wiley-Blackwell, India.
- 3. Wildi, O. 2017. Data analysis in vegetation ecology. CABI, UK.
- 4. Chang, W. 2019. R Graphics Cookbook. Practical recipes for visualizing data. O'Reilly, USA. Quinn, G.P., Keough, M.J., Experimental Design and Data Analysis for Biologists. Cambridge University Press, UK.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is already included in the curriculum of many universities in the world.
- The content of this course is considered important by all research entities, as well as those focused on nature conservation and the management of natural resources

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Know concepts and	Research report and	50%			
	methods from the	presentation				
	domain of data mining					
	and knowledge					
	discovery					
10.5 Seminar/lab activities	Apply data mining	Project implementation	50%			
	techniques in real	and presentation				
problems						
10.6 Minimum performance standards						
		h report and for the final gra				

Each student should obtain minimum 5 for the research report and for the final grade. In order to obtain the minimum grade 5, the student must demonstrate knowledge of handling ecological databases for further analyses.

DateSignature of course coordinatorSignature of seminar coordinator16.01.2023CS II dr. Pavel Dan TurtureanuCS II dr. Pavel Dan Turtureanu

Date of approval **20.01.2023**

Signature of the head of department Assoc. Prof. Beatrice Kelemen