SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Proteomics		
(ro)			Proteomică		
2.2 Course coordinator			Prof. Mihășan Marius, PhD		
2.3 Seminar coordinate	2.3 Seminar coordinator			ssist. Prof. Pătraș Laura Ioana, PhD	
2.4. Year of study12.5 Semester			2	2.6. Type of evaluation C 2.7 Type of discipline Elective	
2.8. Code of the discipline BME1125					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 d	course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 d	course	28	3.6 seminar/laboratory	28
Time allotment:						hours
Learning using manual, course support, bibliography, course notes						24
Additional documentation (in libraries, on electronic platforms, field documentation)						18
Preparation for seminars/labs, homework, papers, portfolios and essays						16
Tutorship						8
Evaluations						4
Other activities:						
3.7 Total individual study hours 70						

3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Statistics, Molecular Biochemistry and Biophysics, Cell and Molecular Biology
4.2. competencies	• Average skills in operating laboratory equipment;
	• Average computer skills.

5. Conditions (if necessary)

5.1. for the course	• Beamer	
	•	Online meeting platform
5.2. for the seminar /lab	٠	Attendance of a minimum of 90% of practical/ seminar classes,
activities	•	Computers, specific development environment

6. Specific competencies acquired

al	ies	•	Operating with key concepts, principles and working methodologies specific to proteomics.
Professional	petenci	•	Identifying the importance of the structure-function relationships and its particularities applied to proteins.
\Pr	com	•	Evaluating the applicability of proteomics-specific molecular analysis methods and techniques in medical, industrial and research laboratories.
	S	•	Acquiring the information necessary to assimilate the content of the disciplines of Applied
sal	Icie		Genomics in Human Health, Metabolomics and Individual Bioinformatics Project.
Transversal	competen	•	Using specific concepts for data analysis and interpreting the results in solving theoretical and experimental problems related to protein biology.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Description of the structural-functional relationship of proteins in the cellular context and the general stages of a proteomics experiment, from the processing of the sample to be analyzed to the acquisition and analysis of data.
7.2 Specific objective of the discipline	 To explain why and how the proteins and peptides must be fractionated before de mass-spectrometry analysis; To describe the main components of a mass-spectrometer and the working principles; To understand the mechanisms behind mass-fingerprinting and spectral-matching techniques for protein identification; The students will learn various data analysis techniques and will apply these techniques for solving data mining problems using special software systems and tools.

8. Content

8.1 Course	Teaching methods	Remarks
 Brief history and origin of the term proteomics. The significance of omic domains. Protein vs. peptide. Structural and functional features of proteins relevant in proteomics studies. The main stages of a proteomics study. Protein fractionation by electrophoresis (PAGE, IEF, 2D-PAGE) and chromatography (IEX, HIC, HILIC, SEC, RPLC). Protein digestion - why and how? Fractionation of peptides. Overview of current proteomic analysis techniques: mass spectrometry, NMR, X-ray crystallography and microarray. Mass spectrometry for protein / peptide analysis - general principles and instruments used. Protein identification by mass spectrometry - mass fingerprint vs. peptide sequencing Analysis of protein-protein interaction networks (interactomics) Biomedical and pharmaceutical applications of proteomics 	 Interactive exposure Presentation Explanation Practical examples Case-study discussions 	

Bibliography

- 1. Dunn M.J., From genome to proteome : advances in the practice and application of proteomics. Weinheim, Wiley-VCH, 2000
- Issaq, H.J., Proteomic and metabolomic approaches to biomarker discovery. Amsterdam : Elsevier/AP, 2013. URL: http://www.sciencedirect.com/science/book/9780123944467 Informații minimale. URL: https://portal.anelisplus.ro/ Acces fulltext. URL: http://www.worldcat.org/oclc/847139875.
- 3. Kahl G., The dictionary of gene technology: genomics, transcriptomics, proteomics. Weinheim, Wiley-VCH, 2001
- 4. Rehm H., Protein biochemistry and proteomics. Amsterdam, Academic Press, 2006
- 5. Tramontano A., The ten most wanted solutions in protein bioinformatics. Boca Raton, Chapman & Hall/CRC, 2005
- Dupree E.J., Jayathirtha M., Yorkey H., Mihasan M., Petre B.A. & Darie C.C. 2020. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes. 8: 14
- 7. Gu J., Bourne P.E., Structural Bioinformatics, 2nd Edition, Hoboken: Wiley-Blackwell, 2009
- 8. Lovric Josip, Introducing Proteomics: From Concepts to Sample Separation, Mass Spectrometry and Data Analysis. Oxford: Wiley Blackwell, 2011.

References (1, 3-5) are available in printed form at the libraries of the Faculty of Biology and Geology and at the Central University Library "Lucian Blaga" in Cluj-Napoca. Reference (2) is accessible in electronic format. References (6-8) are available in electronic format to course holders and will be made available to students.

8.2 Seminar / laboratory	Teaching methods	Remarks
Sample preparation in proteomics.	• Interactive exposure	
Electrophoretic separation: IEF and 2D electrophoresis,	Explanation	
digestion and MS analysis of peptides.	Conversation	
Acquisition and processing of MS data. Databases and	Practical demonstration	
bioinformatics strategies for proteomic analysis.		
Evaluation of an individual project on proteomics	Evaluation	

Bibliography

- 1. Dunn M.J., From genome to proteome : advances in the practice and application of proteomics. Weinheim, Wiley-VCH, 2000
- 2. Sparkman O.D., Penton, Z., Gas chromatography and mass spectrometry : a practical guide. Amsterdam, Elsevier, 2011. URL:

http://www.sciencedirect.com/science/book/9780123736284 Informații minimale. URL: https://portal.anelisplus.ro/ Acces fulltext. URL: http://www.worldcat.org/oclc/713322669.

3. Electronic resources, databases and bioinformatics tools available online

Reference (1, 2) are available in electronic and printed formats, respectively, at the Central University Library "Lucian Blaga" in Cluj-Napoca.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Knowledge of concepts	Colloquium	50%			
	and methods from the					
	topics of the course					
10.5 Seminar/lab activities	Evaluation of a short	Oral colloquium	50%			
	individual project on the					
	topic of proteomics					
10.6Minimum performance	standards					
Each student should obtain minimum 5 at the written exam and oral colloquium. To obtain the minimum						
grade 5, the student must demonstrate the mastery of the basic concepts described during the course and						
practicum classes.	-	-	-			

Date	Signature of course coordinator	Signature of seminar coordinator
16.01.2023	Prof. Marius Mihășan, PhD	Assist. Prof. Laura Pătraș, PhD

Date of approval

Signature of the head of department

20.01.2023

Assoc. Prof. Beatrice Kelemen