SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Advanced programming and algorithms in bioinformatics				
(ro)			Programare avansată pentru bioinformatică				
2.2 Course coordinator	2 Course coordinator Assist. prof. dr. László Zoltán						
2.3 Seminar coordinator		Assist. prof. dr. László Zoltán					
2.4. Year of study	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
		Semester		evaluation		discipline	
2.8. Code of the discipline BME112 4							

3. Total estimated time (hours/semester of didactic activities)

				-	
3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course sup	pport,	bibliography, course no	tes		24
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays				16	
Tutorship					8
Evaluations					4
Other activities:					
3.7 Total individual study hours 70					
3 8 Total hours per semester		126			

5.8 Total nours per semester	120
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• Previous programming experience is not required, but it is an
	advantage
4.2. competencies	Average computer skills

5. Conditions (if necessary)

5.1. for the course	• Beamer		
	Online meeting platform		
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,		
activities	Computers, specific development environment		

6. Specific competencies acquired

Professional competencies	 Development of the ability to use concepts to create a variety of programs to perform various bioinformatics tasks. Descriptions of the algorithms and methods by which these can be implemented in computer code.
Transversal competencies	 Efficient conduct of activities organized in an interdisciplinary group Using the specific concepts of bioinformatics to interpret the results or solve theoretical and experimental problems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Description of analytical methods and downstream data processing, integration and visualization for bioinformatical analyses.
7.2 Specific objective of the discipline	 Description of main techniques regarding data acquisition and processing strategies Understanding the principles underlying the bioinformatical processes Knowledge regarding the main databases for genetic data Applying bioinformatics tools for analysing genetic data

8. Content

8.1 Course	Teaching methods	Remarks
Intro to the course and Linux	• Interactive exposure	
Intro to Bioconductor	Presentation	
Handling Genbank and other file types.	Explanation	
Sequence Alignment algorithms.	Practical examples	
Clustering (Genetic algorithms and k-means)	Case-study discussions	
Principle Component Analysis		
Text Mining and Perl		
Phylogenetic Trees		

Bibliography

- 1. The R Project for Statistical Computing [http://www.R-project.org/
- 2. Perl.org [http://www.perl.org/]
- 3. Tisdall, J. D. (2001) Beginning Perl for Bioinformatics. O'Reilly Media
- 4. Gentleman, R. (2008). R Programming for Bioinformatics. In R Programming for Bioinformatics. https://doi.org/10.1201/9781420063684
- 5. Ristić, M. M. (2009). R programming for bioinformatics. Journal of Applied Statistics, 36(8). https://doi.org/10.1080/02664760802695884
- 6. Tisdall, J. D. (2003). Mastering Perl for Bioinformatics. Building, 159.

8.2 Seminar / laboratory	Teaching methods	Remarks
Introduction to Linux and R in Linux	• Interactive exposure	
Writing program to read Genbank and other files	• Explanation	
types.	 Conversation 	
Single and multiple sequence Alignments.	• Practical demonstration	
Clustering (Genetic algorithms and k-means)		
Principle Component Analysis		
Text Mining		
Phylogenetic Trees and visualisation		
Bibliography		

- 1. The R Project for Statistical Computing [http://www.R-project.org/
- 2. Perl.org [http://www.perl.org/]
- 3. Tisdall, J. D. (2001) Beginning Perl for Bioinformatics. O'Reilly Media
- 4. Gentleman, R. (2008). R Programming for Bioinformatics. In R Programming for Bioinformatics. https://doi.org/10.1201/9781420063684
- 5. Ristić, M. M. (2009). R programming for bioinformatics. Journal of Applied Statistics, 36(8). https://doi.org/10.1080/02664760802695884
- 6. Tisdall, J. D. (2003). Mastering Perl for Bioinformatics. Building, 159.
- 7. Yu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. *Current Protocols in Bioinformatics*, 69(1). https://doi.org/10.1002/cpbi.96

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

<u>10. Evaluatio</u>n

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Knowledge of concepts	Written exam (combined	50%			
	and methods from the	test)				
	topics of the course					
10.5 Seminar/lab activities	Evaluation of a short	Oral colloquium	50%			
	individual project on the					
	topic of metabolomics					
10.6Minimum performance standards						

Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.

Date Signature of course coordinator

Signature of seminar coordinator

Assist. Prof. dr. László Zoltán

16.01.2023 Assist. Prof. dr. László Zoltán

Date of approval

Signature of the head of department

20.01.2023

Assoc. Prof. Beatrice Kelemen