SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discip	line (e (en) Applied biostatistics					
(ro)			Biostatistică aplicată				
2.2 Course coordinator	r		Assist. prof. dr. László Zoltán				
2.3 Seminar coordinator			Assist. prof. dr. László Zoltán				
2.4. Year of study	1	2.5 Semester	ter 2 2.6. Type of evaluation C 2.7 Type of discipline Mandate				Mandatory
2.8. Code of the discipline BME1123							•

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 co	urse	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 co	urse	28	3.6 seminar/laboratory	28
Time allotment:						hours
Learning using manual, course support, bibliography, course notes						24
Additional documentation (in libraries, on electronic platforms, field documentation)					16	
Preparation for seminars/labs, homework, papers, portfolios and essays					18	
Tutorship					8	
Evaluations					4	
Other activities:					-	
3.7 Total individual study hours		70				
3.8 Total hours per semester 126						

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Basic knowledge of statistical concepts and R
4.2. competencies	Average computer skills

5

5. Conditions (if necessary)

5.1. for the course	Multimedia projector	
	Online meeting platform if necessary	
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,	
activities	Computers, specific development environment	

6. Specific competencies acquired

Professional competencies	 The ability to use advanced statistical models in data analyses Advanced skills in data analyses of biologic datasets Statistical analyses of bioinformatic datasets 				
Transversal competencies	• Using specific methods to analyse data, interpret results or solve theoretical and experimental assignments in daily work problems.				
7. Objecti	7. Objectives of the discipline (outcome of the acquired competencies)				

7.1 General objective of the discipline	• To enable students to perform statistical analysis of biological datasets with generalized linear and non-linear models.
7.2 Specific objective of the discipline	• Students will be able to understand and use concepts of generalised and mixture models in their work. They will be able to build generalized linear/non-linear models to solve different types of problems, to perform advanced exploratory data analysis.

8. Content

Teaching methods	Remarks
• Interactive exposure	
Presentation	
• Explanation	
Practical examples	
	 Interactive exposure Presentation Explanation

Bibliography

- 1. Sokal, R. R. and Rohlf, F. J. (1995). *Biometry*: The principles and practice of statistics in biological research. Third Edition, WH Freeman and Company. New York. 850 pp.
- 2. Michael J. Crawley (2014): The R Book, 2nd Edition, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118448908
- Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer. DOI: 10.1007/978-0-387-87458-6
- 4. Jane M Horgan (2020) Probability with R, Second Edition. ISBN:9781119536949. DOI:10.1002/9781119536963
- 5. Ewens, W. J. and Grant, G. R. (2005) Statistical methods in bioinformatics: an introduction. New York: Springer. DOI: 10.1007/b137845

References (1, 2, 3) are available from the Library of Zoology (Clinicilor str. 5-7). References (4, 5) is an optional resource made available upon request.

8.2 Seminar / laboratory	Teaching methods	Remarks
Random number generators in R (sample, rnorm,	Practical demonstration	
rbinom, rpois etc.)		

GOF tests, functions (chisq.test, goodfit, fitdist etc.)	Case-study discussions	
Loops, iterations (apply functions), numeric		
optimalisations (optimize, mle2)		
Fitting linear models (lm) and analysis of variance		
models (aov): regression vs. ANOVA		
Fitting non-linear least squares (nls): logarithmic,		
exponential, power and polynomial models.		
Fitting generalised linear models and generalized		
least squares (glm, gls): poisson, binomial, negative		
binomial and gamma error distributions.		
Fitting linear mixed-effects models and generalized		
linear mixed-effects models (lme, glmer)		
Random walks in R		
Markov chain forecast example in R		
Presentations for storytelling assignment		

Bibliography

- 1. Sokal, R. R. and Rohlf, F. J. (1995). *Biometry*: The principles and practice of statistics in biological research. Third Edition, WH Freeman and Company. New York. 850 pp.
- 2. Michael J. Crawley (2014): The R Book, 2nd Edition, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118448908
- Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer. DOI: 10.1007/978-0-387-87458-6
- 4. Jane M Horgan (2020) Probability with R, Second Edition. ISBN:9781119536949. DOI:10.1002/9781119536963
- 5. Ewens, W. J. and Grant, G. R. (2005) Statistical methods in bioinformatics: an introduction. New York: Springer. DOI: 10.1007/b137845

References (1, 2, 3) are available from the Library of Zoology (Clinicilor str. 5-7). References (4, 5) is an optional resource made available upon request.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.1 Course	Knowledge of concepts and methods from the	Written exam	50%		
	topics of the course				
10.2 Seminar/lab activities	Evaluation of a short	Storytelling assignment	50%		
	individual project				
10.3 Minimum performance standards					
Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the					
minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the					
course and practicum classes.					

16.01.2023

Date of approval

20.01.2023

Signature of the head of department

Assoc. Prof. Beatrice Kelemen