SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en) /		Genomics and functional genomics					
(ro)			Genomică și genomică funcțională				
2.2 Course coordinator		Prof. Banciu Horia Leonard, PhD					
2.3 Seminar coordinator		Lecturer Baricz Andreea Ionela, PhD					
2.4. Year of study	1	2.5 Semester	2 2.6. Type of E 2.7 Type of Compulson			Compulsory	
				evaluation		discipline	
2.8. Code of the disciplin	e		В	ME1121			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					8
Evaluations					4
Other activities:				-	
3.7 Total individual study hours		70			•

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Genetics, Biochemistry, Cell and molecular biology
4.2. competencies	 Average computer skills

5. Conditions (if necessary)

5.1. for the course	• Beamer	
	 Online meeting platform 	
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,	
activities	 Computers, specific development environment 	

6. Specific competencies acquired

Development of the ability to explain the cellular phenotype as a consequence of the multidimensional interaction between genes, gene expression and translation products in a certain context of cellular life; Ability to use bioinformatics strategies for analysis of genomes and genome function; Development of the capacity for analysis, synthesis and communication of specialized scientific information Acquiring the necessary information / complementary to the assimilation of the content of the Proteomics disciplines. Transcriptomics, Applied genomics in human health, Individual bioinformatics project. Using the specific concepts of genomic analysis to interpret the results or solve theoretical and experimental problems of functional genomics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Describing the organization and structure of genomes in viruses, prokaryotes and eukaryotes, the modes of interaction between biological components that generate the cell phenotype, as well as bioinformatics tools for genomic analysis and genome functioning.
7.2 Specific objective of the discipline	 Knowledge of the main genomic sequencing technologies; Knowledge of the general structure of viral, prokaryotic and eukaryotic genomes; Understanding how an interaction between the components of a cellular biological network (genes, transcripts, proteins), as well as how these interactions contribute to the functioning of a cell: Using the main computational strategies for genomic analysis, comparative and functional genomics.

8. Content

8.1 Course	Teaching methods	Remarks
The concept of the genome. Definition of	Interactive exposure	
genomics.	Presentation	
Massive DNA and RNA sequencing	• Explanation	
technologies.	Practical examples	
RNA, protein and metabolite analysis	Case-study discussions	
technologies.		
Characteristics of viral, prokaryotic and		
eukaryotic (nuclear and organelles) genomes		
Genomic analysis: complete genomes, genomic		
databases, comparative genomics.		
Human genome analysis: databases, analysis		
tools and case studies.		
Functional genomics: principles, tools, databases		
and case studies.		

Bibliography

- 1. Caetano-Anolles G., Evolutionary genomics and systems biology. Hoboken, N. J.: Wiley-Blackwell, 2010.
- 2. Lesk A.M., Introduction to genomics. Oxford: Oxford University Press, 2017
- 3. Primrose S. B., Twyman R. M., Principles of gene manipulation and genomics. Malden, Mass; Oxford; Carlton, Victoria: Blackwell Publishing, 2006.
- 4. Xu S., Principles of statistical genomics. New York: Springer, 2013

All references are available in printed format at the libraries of the Faculty of Biology and Geology.

8.2 Seminar / laboratory	Teaching methods	Remarks
Bioinformatic tools for genome assembling	• Interactive exposure	

Bioinformatic tools for comparative genomics	• Explanation	
Bioinformatic tools for phylogenomics	Conversation	
Bioinformatic tools for functional genomics	Practical demonstration	
Functional annotation of genes: tools and	Case study	
databases	,	
Evaluation of a genomic or functional genomic	Evaluation	
short individual project		

Bibliography

- 1. Hunt S., Functional genomics: a practical approach. Oxford: Oxford University Press, 2002.
- 2. Electronic resources, databases and bioinformatics tools available online

Reference (1) is available in printed format at the libraries of the Faculty of Biology and Geology.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is present in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the grade
		methods	(%)
10.1 Course	Knowledge of concepts and	Written exam	50%
	methods from the topics of the	(combined test)	
	course		
10.2 Seminar/lab	Evaluation of a genomic or	Oral colloquium	50%
activities	functional genomic short	_	
	individual project		

10.3 Minimum performance standards

Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.

Date Signature of course coordinator Signature of seminar coordinator 16.01.2023 Prof. Horia Banciu, PhD Lect. Andreea Baricz, PhD

Date of approval **20.01.2023**

Signature of the head of department **Assoc. Prof. Beatrice Kelemen**