SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			Genetics and molecular evolution				
(ro)			Genetică și evoluție moleculară				
2.2 Course coordinator		Lecturer dr. Mircea Cristina					
2.3 Seminar coordinat	or		Lecturer dr. Mircea Cristina				
2.4. Year of study 1 2.5 Semester			1	2.6. Type of evaluation	E	2.7 Type of discipline	Elective
2.8 Code of the discipline BME1115							

3. Total estimated time (hours/semester of didactic activities)

(,			
3.1 Hours per week	4	Of which:	3.2 cou	rse 2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which:	3.5 cou	rse 28	3.6 seminar/laboratory	28
Time allotment:						hours
Learning using manual, course support, bibliography, course notes					42	
Additional documentation (in libraries, on electronic platforms, field documentation)					40	
Preparation for seminars/labs, homework, papers, portfolios and essays					30	
Tutorship						10
Evaluations					4	
Other activities:					-	
2.7 Total in dividual study bosons 126						

3.7 Total individual study hours	126
3.8 Total hours per semester	182
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	Video projector
	Online meeting platform
5.2. for the seminar /lab activities	Participation in at least 90% of the practical work
	Adequate laboratory room

6. Specific competencies acquired

Professional competencies	 Understanding the molecular mechanisms regarding the bases of heredity, the sources of genetic variability, and the evolutionary mechanisms existing in the living world Developing the ability to use laboratory methods and techniques specific to the study of genetic material
Transversal competencies	Developing the capacity to use genetics concepts in the interpretation of bioinformatics data in multidisciplinary contexts

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Description of the molecular aspects related to trait transmission, the correlation between the genetic material and phenotype, and the evolutionary mechanisms involved
7.2 Specific objective of the discipline	 Developing the ability to understand the mechanisms underlying the genetic determination of characters Gaining knowledge about the principles and mechanisms involved in the regulation of gene activity in prokaryotes and eukaryotes Understanding the importance of genetic variability and its generating factors in an evolutionary context

8. Content

8.1 Course	Teaching methods	Remarks
1. Nucleic acids - structure, types, functions	 Interactive exposure 	
2. DNA Replication and Recombination	• Presentation	
3. DNA transcription. RNA molecules and RNA	 Explanation 	
processing	Practical examples	
4. The Genetic Code and translation	Case-study	
5. Control of Gene Expression in Prokaryotes	discussions	
6. Control of Gene Expression in		
Eukaryotes		
7. Gene mutations and DNA repair		
8. Transposable Elements		
9. Chromosomal/genomic changes		
10. Bacterial and viral genetic systems. Bacterial		
conjugation and transformation.		
11. Bacterial and viral genetic Systems.		
Bacteriophage and transduction		
12. Gene isolation and manipulation. Generating		
and analysing recombinant molecules		
13. Gene isolation and manipulation. Genetic		
engineering		
14. Evolution of genes and traits		

Bibliography

- 1. Griffiths, J. F., Griffiths, A. J., Wessler, S. R., Lewontin, R. C., Gelbart, W. M., Suzuki, D. T., & Miller, J. H. (2005). An introduction to genetic analysis. Macmillan.
- 2. Pierce, B. A. (2012). Genetics: a conceptual approach. Macmillan.
- 3. Robinson, T. R. (2010). Genetics for dummies. John Wiley & Sons.
- 4. Watson, J. D. (2004). Molecular biology of the gene. Pearson Education India.
- 5.Khanna, P. (2010). Essentials of genetics. IK International Pvt Ltd.

8.2 Seminar / laboratory Teaching methods Remarks

Practical work: Bacterial conjugation	Interactive exposure
Practical work: <i>In vitro</i> DNA amplification – PCR	Explanation
Practical work: Obtaining recombinant DNA molecules	Conversation
Practical work: Bacterial transformation	Didactical
Practical work: Regulation of gene expression in	demonstration
prokaryotes. Blue-white screening	

Bibliography

- 1. Green, M. R., & Sambrook, J. (2019). Screening bacterial colonies using X-Gal and IPTG: α-Complementation. Cold Spring Harbor Protocols, 2019(12), pdb-prot101329.
- 2. Birge, E. A. (2000). Conjugation and the Escherichia coli Paradigm. In Bacterial and Bacteriophage Genetics (pp. 341-371). Springer, New York, NY.
- 3. Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (Eds.). (2012). PCR protocols: a guide to methods and applications. Academic press.
- 4. Glick, B. R., & Patten, C. L. (2017). Molecular biotechnology: principles and applications of recombinant DNA (Vol. 34). John Wiley & Sons.
- 5. Chen, I., & Dubnau, D. (2004). DNA uptake during bacterial transformation. Nature Reviews Microbiology, 2(3), 241-249.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is present in the curriculum of many universities in the world.
- The course allows for developing fundamental knowledge in evolutionary biology theories and laboratory techniques for generating, processing, and understanding genetic and genomic information needed for advanced bioinformatics analysis in pharmaceutical/biotechnology industries or at academic and biomedical research institutes.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade	
			(%)	
10.1 Course	Know concepts and methods	Research report and	50%	
	from the domain of data mining	presentation		
	and knowledge discovery			
10.2 Seminar/lab	Apply data mining techniques	Project implementation	50%	
activities	in real problems	and presentation		
Minimum performance standards				

Minimum performance standards

Each student should obtain minimum 5 for the research report and for the final grade. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts of data preparation in order to analyze them.

Date Signature of course coordinator Signature of seminar coordinator Lect. Dr. Cristina Mircea Lect. Dr. Cristina Mircea

Date of approval **20.01.2023**

Signature of the head of department Assoc. Prof. Dr. Beatrice Kelemen