SYLLABUS

1. Information regarding the programme				
1.1 Higher education institution	Babeş-Bolyai University			
1.2 Faculty	Faculty of Biology and Geology			
1.3 Department	Department of Molecular Biology and Biotechnology			
1.4 Field of study	Biology			
1.5 Study cycle	Master			
1.6 Study programme / Qualification	Bioinformatics applied in life sciences			

2. Information regarding the discipline

2.1 Name of the discipline (en)		Molecular Biochemistry and Biophysics			
(ro)		Biochimie și biofizică moleculară			
2.2 Course coordinator		Pı	rof. Banciu Horia Leonard, PhD		
2.3 Seminar coordinator		Lecturer Baricz Andreea Ionela, PhD			
2.4. Year of study	1	2.5 Semester	Ι	2.6. Type of evaluation C 2.7 Type of discipline Elective	
2.8. Code of the disciplin	2.8. Code of the discipline BME1113				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	6	Of which: 3.2 cou	ırse	2	3.3 seminar/laboratory	4
3.4 Total hours in the curriculum	84	Of which: 3.5 cou	ırse	28	3.6 seminar/laboratory	56
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes						20
Additional documentation (in libraries, on electronic platforms, field documentation)				20		
Preparation for seminars/labs, homework, papers, portfolios and essays				20		
Tutorship				6		
Evaluations					4	
Other activities:				-		
3.7 Total individual study hours		70				
3.8 Total hours per semester 154						

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Basic algebra calculation skills
4.2. competencies	Average computer skills

6

5. Conditions (if necessary)

5.1. for the course	• Beamer
	Online meeting platform
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,
activities	Laboratory room with biophysics and biochemistry dedicated
	equipment;
	Computers, specific development environment

6. Specific competencies acquired

nal icies	• Development of the ability to explain fundamental biological phenomena as a consequence of the functioning of the laws of physics and chemistry within the context of structural complexity of living systems
Professional competencies	• Ability to use essential laboratory techniques in the study of living and designing experiments, obtaining data, analysing / interpreting them and formulating conclusions
	• Development of the capacity for analysis, synthesis and communication of specialized scientific information.
	• Gaining the complementary information to assimilate the content of Genomics and functional genomics, Structural Bioinformatics and Proteomics courses;
Transversal competencies	 Use of concepts specific to the molecular / cellular level of life organization in new contexts (in vitro, cellular, tissue) .

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Description of basic physical and physico-chemical phenomena in living matter and interpretation of fundamental aspects of life through the prism of the laws of physics; the formation of a rational conception about the functioning of living systems on a natural basis.
7.2 Specific objective of the discipline	 Understanding cellular functions as the purpose of physico-chemical interactions between biomacromolecules, cellular organelles and cells. Knowledge of physical and chemical phenomena promoting the structure and functions of the cell. Understanding the operation and application of laboratory instruments for the study of biomolecular and cellular structures.

8. Content

8.1 Course	Teaching methods	Remarks
Atom and molecule. Atomic and molecular orbitals. Strong chemical bonds. Secondary (weak) chemical bonds. Building of supramolecular structures. Carbohydrates and lipids. Structures and roles. Amino acids and proteins. Peptide bond, protein structure levels. Protein functions. Enzymes and coenzymes. Enzyme catalysis. Nucleotides and nucleic acids (DNA, RNA), nucleic acid structure and roles Protein-protein, protein-nucleic acids and protein-ligands interactions Principles of biophysical methods and techniques for investigating the cell, nucleic acids and protein structure	 Interactive exposure Presentation Explanation Practical examples Case-study discussions 	
Cell metabolism: principles and types of metabolic pathways		

Bibliography

Sionography		
1. Alberts B., Johnson A., Lewis J., Molecular	biology of the cell. New York ; A	bingdon : Garland
Science, Taylor & Francis Group, 2008.		
2. Frauenfelder H., Chan S. S., The physics of	proteins : an introduction to biolog	gical physics and
molecular biophysics. New York : Springer	, 2010.	
3. Glaser, Roland. Biophysics, 2005.		
4. Lesk A. M., Introduction to protein architec	ture : the structural biology of prot	eins. New York ;
Oxford University Press, 2003.		
5. Nelson P. C. si colab., Biological physics :	energy, information, life. New Yor	k : W. H. Freeman,
2008.		
6. Papachristodoulou D., Snape A., Elliott W.I	H., Elliott D.C., Biochemistry and 1	molecular biology.
Oxford : Oxford University Press, 2014.		
7. Phillips R., Kondev J., Theriot J., Garcia H.	G., Orme N., Physical biology of t	he cell. London ;
New York : Garland Science, 2013		
All references are available in hard print format at t		
3.2 Seminar / laboratory	Teaching methods	Remarks
Seminar: Methods of investigation of biological	 Interactive exposure 	
compounds: separation (centrifugation,	• Explanation	
electrophoresis, chromatography)	Conversation	
Seminar: Methods for investigating biological	 Practical demonstration 	
compounds: qualitative methods (electron		
nicroscopy, X-ray diffraction, FTIR, Raman		
pectrometry)		
Seminar: Methods of investigation of biological		
compounds: quantitative methods (spectrometry -		
spectrophotometry, spectrofluorimetry, mass		
spectrometry)		
Practical work: separation by centrifugation of		
biological samples and electrophoresis of nucleic		
acids and proteins		
Practical work: spectrophotometric and		
pectrofluorimetric dosing of nucleic acids and		
proteins		
Practical work: electron microscopy		
demonstration)		
Practical work: mass spectrometry		

(demonstrative) Final evaluation

I

I

Bibliography

- 1. Copeland R. A., Enzymes : a practical introduction to structure, mechanism and data analysis. New York : VCH, 1996.
- 2. Davidovits, P. Physics in biology and medicine, 2008.
- 3. Glusker J. P., Lewis M., Crystal structure analysis for chemists and biologists. New York ; Weinheim ; Cambridge : VCH Publishers, 1994.
- 4. Mason W.T., Fluorescent and luminescent probes for biological activity : a practical guide to technology for quantitative real-time analysis. London , Academic Press, 1993.
- 5. Wilson K., Principles and techniques of biochemistry and molecular biology. Cambridge : Cambridge University Press, 2010.

All references are available in hard print format at the libraries of the Faculty of Biology and Geology.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is applicable and allows the acquisition of practical skills needed to work in laboratories for analysis and interpretation of biological and theoretical data needed for advanced bioinformatics analysis in research institutes or in R & D units at pharma and biotech companies.
- The course is present in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Know concepts and	Written exam (combined	50%			
	methods from the topics	test)				
	of the course					
10.5 Seminar/lab activities	Seminar/lab activities Apply qualitative and		50%			
	quantitative techniques					
	in real-life problems					
10.6Minimum performance standards						
Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the						
minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the						
course.						

Date Signature of course coordinator Signature of seminar coordinator

16.01.2023 Prof. Horia Banciu, PhD

Lect. Andreea Baricz, PhD

Date of approval

Signature of the head of department

20.01.2023

Assoc. Prof. Beatrice Kelemen