SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Department of Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	Master
1.6 Study programme / Qualification	Bioinformatics applied in life sciences

2. Information regarding the discipline

2.1 Name of the discipline (en)			R programming for data analysis and visualisation				
(ro)			Programare in R pentru analiza si vizualizarea datelo			izarea datelor	
2.2 Course coordinator		Assist. prof. dr. László Zoltán					
2.3 Seminar coordinator			Assist. prof. dr. László Zoltán				
2.4. Year of study	1	2.5 Semester	1 2.6. Type of E 2.7 Type of Compute				Compulsory
				evaluation		discipline	
2.8. Code of the discipline BME1112							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
					S
Learning using manual, course suppor	t, bił	oliography, course notes	8		24
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					6
Evaluations					4
Other activities:					-
3.7 Total individual study hours70					
2.9 Total hours per competer 126					

5.8 Total nours per semester	120
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• NA
4.2. competencies	Average computer skills

5. Conditions (if necessary)

5.1. for the course	Multimedia projector		
	Online meeting platform if necessary		
5.2. for the seminar /lab	• Attendance of a minimum of 90% of practical/ seminar classes,		
activities	Computers, specific development environment		

6. Specific competencies acquired

Professional competencies	 The ability to use statistical concepts in data analyses Data analyses and visualisation of biologic datasets Create customised functions for analyses of bioinformatic datasets
Transversal competencies	• Using specific methods to analyse data, interpret results or solve theoretical and experimental assignments in daily work problems.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To enable students to perform exploratory data analysis with statistics and plots.
7.2 Specific objective of the discipline	• Students will be able to understand basic concepts of using R, its data structures and indexing, to use them in their work. They will be able to apply basic functions, to create basic loops to solve different types of problems, to create customized functions, create various plots, to perform basic exploratory data analysis with summary statistics and plots.

8. Content

8.1 Course	Teaching methods	Remarks
General introduction into the R ecosystem	• Interactive exposure	
R programming basics	Presentation	
Understanding and manipulating data structures	Explanation	
Making custom functions in R	Practical examples	
Value of visualisation and design	-	
Data exploration: descriptive statistics		
Basic data visualization using R		
Data visualization using ggplot2		

Bibliography

- 1. Roger D. Peng (2020): R Programming for Data Science, <u>http://leanpub.com/rprogramming</u>
- 2. Hadley Wickham (2016): ggplot2: Elegant Graphics for Data Analysis, <u>https://ggplot2-book.org/index.html</u>
- Alex Douglas, Deon Roos, Francesca Mancini, Ana Couto & David Lusseau (2021): An Introduction to R, <u>https://intro2r.com/</u>
- 4. Michael J. Crawley (2014): The R Book, 2nd Edition, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118448908

References (1, 2, 3) are freely available available in electronic format. References (4) is an optional resource made available upon request.

8.2 Seminar / laboratory	Teaching methods	Remarks
Installation of R, setting working directory, databases,	Practical	
help platforms etc.	demonstration	
Use of R as a calculator, functions and matrix	• Case-study	
operations, missing data and logical operators	discussions	
Data management with repeats, sorting, ordering, and		
lists, vector indexing, factors, strings, display and		
formatting		

Basics of custom functions, the use of a variety of
conditional statements, introduce the use of loops
Preparation of simple graphs in R using basic functions:
scatterplot, boxplot, barplot, stripchart, donut charts,
dendrograms.
Preparation of graphs using ggplot2: scatterplot,
boxplot, barplot, stripchart, donut charts, dendrograms.
Presentations for storytelling assignment

Bibliography

- 1. Roger D. Peng (2020): R Programming for Data Science, http://leanpub.com/rprogramming
- 2. Hadley Wickham (2016): ggplot2: Elegant Graphics for Data Analysis, <u>https://ggplot2-book.org/index.html</u>
- 3. Alex Douglas, Deon Roos, Francesca Mancini, Ana Couto & David Lusseau (2021): An Introduction to R, <u>https://intro2r.com/</u>
- 4. Michael J. Crawley (2014): The R Book, 2nd Edition, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118448908

References (1, 2, 3) are freely available available in electronic format. References (4) is an optional resource made available upon request.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic entities, but also in R&D units in private companies;
- The course is listed in the curriculum of similar specializations at Romanian and foreign Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the
		methods	grade (%)
10.1 Course	Knowledge of concepts and	Written exam	50%
	methods from the topics of		
	the course		
10.2 Seminar/lab activities	Evaluation of a short	Storytelling assignment	50%
	individual project		
10.3 Minimum performance	e standards		

Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.

Date	Signature of course coordinator	Signature of seminar coordinator
16.01.2023	Assist. prof. dr. László Zoltán	Assist. prof. dr. László Zoltán

Date of approval

Signature of the head of department

20.01.2023

Assoc. Prof. Beatrice Kelemen