COURSE SYLLABUS CELL TYPE DIVERSITY DEVELOPMENT AND REGULATION

1. Data about the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Biology and Geology
1.3 Department	Molecular Biology and Biotechnology
1.4 Field of study	Biology
1.5 Study cycle	2 years, Full Time
1.6 Study Programme /	Master/ Molecular Biotechnology
Qualification	

2. Date despre disciplină

2.1 Name of discipline	Cell Type Diversity Development and Regulation (in English)			
	(BME1102)			
2.2 Teacher responsible for lectures CSI dr. Tudor C. Badea				
2.3 Teacher responsible for	seminars	CSI dr. Tudor C. Badea		
2.4 Year of study 1 2.5 \$	emester 1 2.6. Type of evaluation C 2.7 Course framework		DS	

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2
		Lectures		Laboratory classes	
3.4 Total hours in the curriculum	28	28	28	28	28
Allocation of study time:					ore
Study supported by textbooks, other c	Study supported by textbooks, other course materials, recommended bibliography and personal				
student notes					
Additional learning activities in the library, on specialized online platforms and in the field					26
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays					14
Tutoring					14
Examinations					2
Other activities:					

3.7 Individual study (total hours)	70
3.8 Total hours per semester	126
3.9 Number of credits	5

4. Precondiții (acolo unde este cazul)

4.1 Curriculum	Genetics, Biochemistry, Cell and Molecular Biology	
4.2 Competences	Interpretation of scientific information	

5. Conditions (where applicable)

5.1 Conducting lectures	MS teams platform	
	Audio-video logistics	
5.2 Conducting seminars /	Admission at final evaluation is conditioned by at least 80%	
laboratory classes	attendance at the scheduled seminar/laboratory classes.	

6. Specific competences acquired

Professional competences	 The student achieves analytical and synthesis skills in Molecular Biology, Genetic Engineering, cell type classification, and strategies for repair, regeneration or replacement of tissues. The student achieves analytical and synthesis skills of scientific information presented in English.
Transversal	 Acquisition of basic theoretical knowledge for future doctoral research in the field of Neuroscience, Molecular Biology, Genetic Engineering, Immunology, Molecular Biotechnologies. Developing the ability to work alone or part of a team.

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	Acquiring general knowledge about cell type diversity, methods of studying cell types, and methods to manipulate cell types for scientific or therapeutic purposes.
7.2 Specific objectives	 Acquiring theoretical and practical knowledge about study and classification methodologies for cell types. Acquiring theoretical and practical knowledge about cellular mechanisms that lead to cell type diversity. Acquiring theoretical and practical knowledge about genetic manipulation techniques used in modern therapeutics.

8. Content

8.1 Lectures	Teaching Methods	Observations
1. Cell types as building blocks of living organisms.	In person or online on	2 hours
Properties and classification criteria.	the MS teams	
	platform. Interactive	
	class participation	
2. General principles of cell type development. Cell	In person or online on	2 hours
division, cell type specification, cell type	the MS teams	
differentiation.	platform. Interactive	
	class participation	
3. General principles of tissue morphogenesis.	In person or online on	2 hours
	the MS teams	
	platform. Interactive	
	class participation	
4. Cell autonomous and transcriptional regulation of	In person or online on	2 hours
cell type formation.	the MS teams	
	platform. Interactive	
	class participation	
7. Cell-Cell interactions in cell type development.	In person or online on	2 hours
	the MS teams	
	platform. Interactive	
	class participation	
8. Molecular signals for cell type development.	In person or online on	2 hours
	the MS teams	
	platform. Interactive	

	class participation	
9. Neuronal Cell types	In person or online on the MS teams	2 hours
	platform. Interactive	
10. Immune system and Cancer - two particular cases	class participation In person or online on	2 hours
of cell type diversification.	the MS teams	2 nours
	platform. Interactive	
	class participation	
11. Molecular approaches to cell type study and	In person or online on	2 hours
manipulation.	the MS teams	
	platform. Interactive	
	class participation	
13. Gene therapy	In person or online on	2 hours
	the MS teams	
	platform. Interactive	
	class participation	
14. Cellular reprogramming, tissue replacement, repair	In person or online on	2 hours
and regeneration.	the MS teams	
	platform. Interactive	
	class participation	

Bibliography

(1) Developmental Biology Scott F. Gilbert. 7th edition or 6th edition:

https://www.ncbi.nlm.nih.gov/books/NBK9983/

(2) Molecular Biology of the Cell Alberts 5th edition or 4th edition:

https://www.ncbi.nlm.nih.gov/books/NBK21054/

- (3) Principles of Neuroscience Kandel Schwartz
- (4) Purves Neuroscience
- (5) Scientific articles from public databases (PubMed Central, SpringerLink, etc.) accessed via "LUCIAN BLAGA" Central University Library of Cluj-Napoca, Anelis

8.2 Seminars / laboratory classes	Teaching Methods	Observations
Seminar: Students present papers relevant to the course	Seminar = student paper	16 ore
material.	presentations and discussions.	
Laboratory:	Demonstration followed by	12 ore
1) Image Analysis using FIJI/IMAGEJ = Neuronal	individual implementation by the	
Reconstructions	student based on assignment.	
2) Cell type classification based on gene expression		
profiling using hierarchical clustering (Matlab)		
3) Gene expression discovery and datamining of		
associated information using publicly available		
databases.		

Bibliography

Scientific articles from public databases (PubMed Central, SpringerLink ,etc.) accessed via "LUCIAN BLAGA" Central University Library of Cluj-Napoca, Anelis

9. Aligning the contents of the discipline with the expectations of the epistemic community representatives, professional associations and standard employers operating in the program field

- The course has a similar content to courses from other European universities, and is in sink with the students' expertise level.
- The course is essential for the development of analytical and synthesis skills in Biotechnology, Molecular Biology, Cell diversity, and modern approaches for tissue repair and regeneration.

10. Examination

	40.4 77 1 1 1 1	1000	40.00
Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of

			the final grade
10.4 Lectures	Assessment of knowledge	Written Exam	50 %
10.5 Seminar/laboratory	Participation in the	Assesment during lab	25 %
	analysis exercises during	exercises.	
	laboratory sessions		
	Ability to present and	Paper presentations	25 %
	summarize scientific		
	information.		
10.6 Minimum performance standard			

10.6 Minimum performance standard

- Knowledge of 50% of the information content of the course
- Involvement in at least 50% of the seminars activities.

Completion date Signature of the teacher Signature of the teacher

Responsible for lectures responsible for seminars

/laboratory classess

20.02.2023 CS I dr. Tudor C. Badea CS I dr. Tudor C. Badea

Date of approval in the department

Signature of Department Head

27.02.2023

Conf. Dr. Beatrice Kelemen