DETAILED SYLLABUS *Plant and Animal Biocoenology (Community Ecology)*

1.1 UniversityBabeş-Bolyai University1.2 FacultyBiology and Geology1.3 DepartmentTaxonomy and Ecology1.4 Field of studyBiology1.5 Program level (bachelor or master)Master (2 years) with attendance1.6 Study program / QualificationSystemic Ecology and Biodiversity Conservation / Master

1. Information about the study program

2. Information about the subject

2.1 Subject title Plant an			nd A	nimal	Biocoenology (BME33	301)			
2.2 Course activities professor			Dar	Dan Gafta					
2.3 Seminar activities professor			Dar	n Gaf	ta				
2.4 Year of study	2	2.5 Semeste	r	1	2.6 Type of assessment	С	2.7 Subject regime	Compulsory	

3. Total estimated time (teaching hours per semester)

3.1 Number of hours per week	4	out of which: 3.2 course	2	3.3 seminar/laboratory	2	
3.4 Total number of hours in the	56	out of which: 3.5 course	28	3.6 seminar/laboratory	28	
curriculum	50				20	
Time distribution					Hours	
Study based on textbook, course support, references and notes						
Additional documentation in the library, through specialized databases and field activities						
Preparing seminars/laboratories, essays, portfolios and reports						
Tutoring						
Assessment (examinations)						
Others activities						
3.7 Total hours for individual study 140						
3.8 Total hours per semester 196						
3.9 Number of credits 8						

4. Preconditions (if necessary)

4.1 Curriculum	Principles of Systemic Ecology
4.2 Skills	Tabular calculations and graph production in electronic spreadsheets Report elaboration

5. Conditions (if necessary)

5.1. For course	Logistic support (computer for each student)
development	
5.2. For seminar /	Logistic support (laptop/computer running under Windows 7/8/10 for each student)
laboratory development	Software for numerical analysis (R)
	Real and simulated data sets in electronic format
	Compulsory attendance of students at minim 80% of the seminars

6. Acquired specific competences

Professional	• Ability to prepare a protocol for plant and animal community sampling according to the
competences	habitat type, species biological traits and study aims
	• Ability to detect the dominant dynamic processes driving the species composition of
	biocoenoses
	• Ability to analyse quantitatively the structure and diversity of ecological communities
Transversal	• Developping the capacity of undertaking the ecologic management of biodiversity and natural
competences	habitats
	• Using the acquired knowledge in new circumstances
	• Applying the theoretical knowledge to practical problems

7. Subject objectives (arising from the acquired specific competences)

7.1 Subject's general objective	• Understanding the importance of Biocoenology through the complex relations between the extant species and, between the latter and their abiotic environment
7.2 Specific objectives	 Learning the basic concepts and methodologic approaches used in the analysis of the structure, dynamics and diversity of ecological communities Learning about the main intracoenotic connections Learning about the complex assembly rules of species in communities Learning about the functional approach in the study of biocoenoses Understanding the consequences of disturbance on the stability and functioning of the ecological communities

8. Contents

8.1. Courses	Teaching methods				Observations
Current theories about the concept of ecological community (biocoenosis)	Lecture support	with	video	presentation	
Functional approach in studying ecological communities: functional types and ecological strategies	Lecture support	with	video	presentation	
Sampling the terrestrial communities	Lecture support	with	video	presentation	
Interspecific relationships driving the structure and dynamics of ecological communities	Lecture support	with	video	presentation	
Models of species co-existence in communities	Lecture support	with	video	presentation	
Modelling the distribution of species abundance in ecological communities	Lecture support	with	video	presentation	
Organisation of ecological communities	Lecture support	with	video	presentation	
Disturbance and community stability: inertia and resilience	Lecture support	with	video	presentation	
Predictability of ecological successions	Lecture support	with	video	presentation	
Multispecific spatial structure of ecological communities	Lecture support	with	video	presentation	
Ecological determinism and functional role of the species/functional diversity at community level	Lecture support	with	video	presentation	
Estimating the alpha, beta and gamma diversity	Lecture support	with	video	presentation	

Extrapolating the island biogeography theory to the study of the structure of ecological communities	Lecture with video presentation support					
Compositional dissimilarity of ecological communities: species nestedness and turn-over	Lecture with video presentation support					
References:						
 Begon M., Townsend C.R., 2021. Ecology: from Individuals to Ecosystems. 5th edition. Blackwell, Oxford. Garnier E., Navas M.L., Grigulis K., 2016. Plant Functional Diversity. Oxford University Press, Oxford. Magurran A.E., 2013. Measuring Biological Diversity. Wiley-Blackwell, Chichester. Morin P.J., 2011. Community Ecology. Wiley-Blackwell, Chichester. Sher A., Molles M., 2021. Ecology: concepts and applications. 9th edition. McGraw-Hill, New York. van der Maarel E., Franklin J. (eds.), 2013. Vegetation Ecology, 2nd. ed. Wiley-Blackwell, Chichester. 						
8.2. Seminars	Teaching methods	Observations				
Fittinf the empirical distribution of cumulative relative abundance of the species composing an ecological community	Practical application on computer					
Estimation of alpha- and beta-diversity within-communities and respectively, between-communities	Practical application on computer					
Analysis of the specific dissimilarity between two or more groups of communities (ANOSIM)	Practical application on computer					
Estimation of species richness through the procedure of species rarefaction and extrapolation	Practical application on computer					
Estimation of functional diversity at community level	Practical application on computer					
Predicting the species composition of communities along successions through the method of Markov chains	Practical application on computer					
Estimating the width and overlap of ecological niches pertaining to the co-occurring species in communities	Practical application on computer					
Analysis of species patterns between communities: nestedness and turn-over	Practical application on computer					
Special session for repeating the lost seminars						
Working out a project reporting the structural analysis of a set of ecological communities at student's choice	Working independently on data analysis and reporting the results	Thereportelaborationcovers5seminars(10hours)				

References:

Gardener M., 2014. Community Ecology - Analytical Methods Using R and Excel. Pelagic Publishing, Exeter. vegan: Community Ecology Package (https://cran.r-project.org/web/packages/vegan.pdf) vegetarian: Jost Diversity Measures for Community Data (https://cran.r-project.org/web/packages/vegetarian/vegetarian.pdf) coenocliner: Coenocline Simulation (https://cran.r-project.org/web/packages/coenocliner.pdf) EcoSimR: Null Model Analysis for Ecological Data (https://cran.r-project.org/web/packages/EcoSimR/EcoSimR.pdf) betapart: Partitioning Beta Diversity into Turnover and Nestedness Components (https://cran.r-project.org/web/packages/betapart/betapart.pdf) cooccur: Probabilistic Species Co-Occurrence Analysis (https://cran.r-project.org/web/packages/cooccur.pdf) FD: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology (https://cran.r-project.org/web/packages/FD/FD.pdf) cluster: Finding Groups in Data (https://cran.r-project.org/web/packages/cluster/cluster.pdf) fpc: Flexible Procedures for Clustering (https://cran.r-project.org/web/packages/fpc/fpc.pdf) coin: Conditional Inference Procedures in a Permutation Test Framework (https://cran.r-project.org/web/packages/coin/coin.pdf) indicspecies: Relationship Between Species and Groups of Sites (https://cran.r-project.org/web/packages/indicspecies.pdf)

9. Corroboration / validation of the subject's content in relation to the expectations coming from representatives of the epistemic community, of the professional associations and of the representative employers in the program's field.

- The course has an updated, similar content to those given in other European and north-American universities and is adapted to the different skill levels of the students
- The course content is focused on practical issues related to the structural analysis of ecological communities, and thus has an applied science feature
- During seminars, the students have the opportunity to propose changes for the course improvement and the conformation of its content to the labour market requirements

			-		
Type of activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the		
			iiiai grade		
10.4 Course	Knowledge of the information content	Writing exam	75%		
	Ability to use the acquired knowledge in a				
	new context				
10.5	Ability to perform and interpret the specific	Project evaluation	25%		
Seminar/laboratory	structure of ecological communities	-			
10.6 Minimum performance standards					
T T 1 1 C					

10. Assessment (examination)

• Knowledge of at least 50% of the information that pertains to the given courses

• Acquiring the skills (in proportion of at least 60%) practised during seminars

• The minimum grade obtained in each of the two examinations (the writing test and the project evaluation) should be at least 5

Date 27th February 2023 Signature of the course instructor, Dan Gafta (associate prof.) Signature of the seminar instructor, Dan Gafta (associate prof.)

Date of approval by the department 27th February 2023

Head of department's signature Florin Crisan (lecturer dr.)