DISCIPLINE SHEET

1. Program data

1.1 Institution	"Babeş-Bolyai" University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Hungarian Department of Biology and Ecology
1.4 Field of studies	Biology
1.5 The cycle of studies	Master, 4 semesters, full-time
1.6 Study program / Qualification	Medical biology (Hungarian) / Expert biologist, biochemist

2. Discipline data

2.1 Name of t	he dis	cipline Biological	Biological modelling and epidemiology in R and python with GIS				
		elements	elements				
2.2 Owner of course activities Assoc. prof. dr. László Zoltán							
2.3 Holder of seminar activities		As	soc. prof. dr. László Zo	ltár	1		
2.4 Year of	1	2.5 The semester	3	2.6. The type of	E	2.7 Discipline regime	Ob.
study				assessment			

3. Estimated total time (hours per semester of didactic activities)

3.1 Number of hours per week	4	Of which: 3.2 course	2	3.3 seminar /	2
				laboratory	
3.4 Total hours from the	154	Of which: 3.5 course	56	3.6 seminar /	28
education plan				laboratory	
Distribution of the time fund:					hours
Study according to the textbook	, course	e support, bibliography and	notes		28
Additional documentation in the library, on specialized electronic platforms and in the field					
Preparation of seminars/laboratories, assignments, reports, portfolios and essays					
tutoring					
EXAMINATION					
Other activities:					
3.7 Total hours of individual study					
3.8 Total hours per semester					
3.9 Number of Credits					

4. Prerequisites (where applicable)

4.1 of the curriculums	
4.2 skills	

5. Conditions (where applicable)

s. conditions (where appreciate		
5.1 Conducting the course	Logistic support: multimedia projector	
	Course support for internal use	
5.2 Conducting the	Multimedia projector	
seminar/laboratory	• Modelling and statistical analysis programs (R, QGIS, etc.),	
	computers (desktop/laptop)	
	• Participation in at least 80% of the laboratory work is a	
	condition for participation in the exam	

6. The specific skills accumulated

Professional skills	Solving problems through modelling, algorithmizing, etc.; Description of states, systems, processes, phenomena;	
Transversal	Research skills, creativity;	
skills	The ability to conceive projects and carry them out;	
	Ability to solve problems;	

7. The objectives of the discipline (resulting from the grid of accumulated skills)

7.1 The general objective of the discipline	• At the end of the course, the student should be able to recognize and use mathematical models associated with biological phenomena to create scenarios and formulate epidemiological models
7.2 Specific objectives	• At the end of the course, the student must be able to recognize and use the mathematical models associated with the following types of biological phenomena: the dynamics of subpopulations in an epidemiological context; ordinary differential equation models for modelling the persistence and resilience of biological networks.

8. Contents

8.1 Course	teaching methods	Remarks
1. Introduction to biological networks, types of networks,	Exposition,	2 hours
properties of biological networks.	description,	each
2. The waterfall model. Patterns of biological networks.	explanation,	
3. Experimental examinations of networks: (i) chain length; ii)	examples, case study	
the relationship between complexity and stability.	discussions	
4. Classification of nodes in biological networks by different		
criteria.		
5. Stability of biological networks. Preferential connection.		
6. Epidemiological models: SIR models.		
7. SIR models dependent on frequency and density.		
8. Epidemic dynamics and numerical optimization.		
9. Case Study: Bombay Plague.		
10. Reaction-diffusion models. Deterministic and stochastic		
models. The Monte Carlo method. Markov chains and		
processes.		
11. The metapopulation aspects of epidemics. The effect of		
spatial heterogeneity. The Levins model.		
12. Demographic patterns: extinction-colonization cycles.		
Implicit, explicit and spatially realistic epidemiological		
models.		
13. Case studies: bird flu (H1N1) and acquired		
immunodeficiency syndrome (AIDS)		
14. Case Studies: Modelling Ebola, Rabies and Malaria.		

Bibliography

- 1. Barabási, A.-L.Network science. Cambridge University Press, 2016.
- 2. Gilpin, ME, Ilkka A.H. Metapopulation biology: ecology, genetics, and evolution. No. 504.7 MET. 1997.
- 3. Amek, N.et al. Spatial and temporal dynamics of malaria transmission in rural Western Kenya. Parasite Vectors, 5, 86-86, 2012.
- 4. **Beyer, HL**Epidemiological models of rabies in domestic dogs: dynamics and control (Doctoral dissertation, University of Glasgow), 2010.
- 5. Bivand, RS, Pebesma, EJ, & Gómez-Rubio, V. Applied spatial data analysis with R. Springer, 2008.

- 6. **Chongsuvivatwong, V.** Analysis of epidemiological data using R and Epicalc. Book Unit, Faculty of Medicine, Prince of Songkla University, 2008.
- 7. **Ducrot, C. et al.**Modeling BSE trend over time in Europe, a risk assessment perspective. European journal of epidemiology, 25(6), 411-419, 2010.
- 8. **Huppert, A., Barnea, O., Katriel, G., Yaari, R., Roll, U., & Stone, L.**Modeling and Statistical Analysis of the Spatio-Temporal Patterns of Seasonal Influenza in Israel. PloS one, 7(10), e45107, 2012.
- 9. Lekone, PE, & Finkenstädt, BFStatistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics, 62(4), 1170-1177.
- 10. Stevens, MHA Primer of Ecology with R. Springer, 2006.
- 11. **Stevenson, MA**The spatio-temporal epidemiology of bovine spongiform encephalopathy and foot-and-mouth disease in Great Britain. Unpublished PhD thesis, Massey University, Palmerston North, New Zealand, 2003.

8.2 Seminar / laboratory	teaching methods	Remarks
1. Introduction to the R language, vectors, matrices, data	Individual practical	2 hours
tables, lists.	exercises on the	each
2. Creating your own functions in the R language.	computer	
3. Manipulation of data tables in R. Randomization.		
4. Statistical distributions (negative exponential, negative		
binomial, Cauchy, Lévy).		
5. Network modelling - the effect of chain lengths.		
6. Network modelling - the effect of the density of		
relationships.		
7. Solving first-order ordinary differential equations in R.		
8. Simple epidemiological models, SIR models.		
9. Density- and frequency-dependent epidemiological models,		
dynamic SIR models		
10. Numerical optimization: the "maximum likelihood"		
principle; Modelling the bubonic plague in Mumbai (1905)		
11. Spatial data types and their characteristics. Spatial		
autocorrelation and spatial data analysis.	-	
12. Case studies: the spread of BSE and H1N1		
13. Case Studies: AIDS and Ebola		
14. Case Studies: Rabies and Malaria		
Bibliography		

- 1. Stevens, MHA Primer of Ecology with R. Springer Science & Business Media, 2009.
- 2. **Bivand, RS**, et al. Applied spatial data analysis with R. Vol. 747248717. New York: Springer, 2008.

9. Corroboration of the contents of the discipline with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program

Through the use of computer simulations of various biological phenomena, the objectives achieved during the semester help to deepen the understanding of mathematical tools and their use in solving various ecological problems related to biological networks and epidemics - which in research/on the labour market is in accordance with the requirements current.

10. Evaluation

I of L fulution			
Type of	10.1 Evaluation criteria	10.2 evaluation	10.3 Weight of
activity		methods	the final grade
10.4 Course	Capacity to use the information in a new context	Written exam	50%

10.5	Skills to identify ecological phenomena and	Written exam	50%		
Seminar/	corresponding mathematical models. The ability to				
laboratory	formulate mathematical models in the R language.				
	Skills following a laboratory protocol	- it's not			
		necessary			
10.6 Minimum Performance Standard					
75% of the courses are compulsory					
Successful completion of the practical exam is mandatory.					
The result of the final exam must be at least 5.					

Date of completion	Course owner's signature	Signature of the seminar holder
26.02.2023	Assoc. prof. dr. László Zoltán	Assoc. prof. dr. László Zoltán
Date of approval in the depa	artment	Signature of the department director
26.02.2023		Assoc. prof. dr. László Zoltán