COURSE SYLLABUS

Phylogeography and Numerical Analysis in Ecology

1. Data about the program

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Doctoral school	Integrative Biology
1.4 Field of study	Biology
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training / PhD in Biology

2. Course data

2.1 Name of discip	line	Phylogeog	Phylogeography and numerical analysis in ecology			
2.2 Teacher responsible for lectures			N	Mihai Puşcaş / Dan Gafta		
2.3 Teacher responsible for seminars Mihai Puşcaş / Dan Gafta						
2.4 Year of study	I	2.5 Semester	I	2.6. Type of	C	2.7 Course framework
_				evaluation		

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2
-		Lectures		Laboratory classes	
3.4 Total hours in the curriculum	48	Out of which: 3.5	24	3.6 Seminars /	24
		Lectures		Laboratory classes	
Allocation of study time:					
Study supported by textbooks, other course materials, recommended bibliography and personal					16
student notes					
Additional learning activities in the library, on specialized online platforms and in the field					
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays					12
Tutoring					8
Examinations					4
Other activities: -					

3.7 Individual study (total hours)	48
3.8 Total hours per semester	96
3.9 Number of credits	10

4. Preconditions (where applicable)

"I reconditions (where appreciate)				
4.1 Curriculum	 Genetics / Biogeography (undergraduate level) 			
	 Biostatistics (undergraduate level) 			
4.2 Competences	• Tabular calculations and graph production in electronic spreadsheets			

5. Conditions (where applicable)

5.1 Conducting lectures	Logistic support (digital video projector)
5.2 Conducting seminars /	Logistic support (computer running under Windows 10 for each student)
laboratory classes	Access of students to the online platform Microsoft Teams
	Software for numerical analysis (R)
	Real and simulated datasets in electronic format
	Mandatory participation in at least 80% of the seminars

6. Specific competences acquired

o. Specific	competences acquired
	• Knowledge and understanding of the general principles on the concepts of biodiversity, its levels of organization
nces	• Knowledge and understanding of spatial distribution patterns of intraspecific biodiversity
Professional competences	 and its determinants; Knowledge of the main areas of refugia and post-glacial migration routes for the flora and
ial cor	fauna of Europe, with a focus on biomes in Romania; • Correct use of the concepts of intraspecific biodiversity, glacial refugia, endemism
ssion	 Ability to choose the adequate type of numerical analysis according to the logical hypothesis and the types of available variables
Profe	 Ability to perform numerical analyses, to interpret the outputs correctly and to validate the results
	• Ability to use the numerical analyses within the framework of the deductive method to be applied in ecological studies
S	• Use of theoretical notions in solving practical problems of conservation of intraspecific biodiversity and its implications in the management of protected areas
ersal	• Developing the capacity of using the numerical analyses in the ecologic management of
Transversal	biodiversity and natural habitatsUsing the acquired knowledge in new circumstances
T1 00	Applying the theoretical knowledge to practical problems

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	 Knowledge and understanding of the organization of intraspecific diversity, its geographical distribution and its phylogenetic, phylogeographic and historical significance Acquiring the ability of using the numerical analyses in the context of ecological studies
7.2 Specific objectives	 Understanding the general principles regarding the organization and spatial structuring of biological diversity; Understanding the meanings of the main factors involved in the distribution of intraspecific biological diversity; Identifying and characterizing the main important biogeographical regions that functioned as areas of refugia during the glacial periods for Europe's biodiversity; Understanding the ecological and historical factors that have conditioned the current distribution of intraspecific biological diversity in Europe and Romania; Developing the capacity to achieve inter, intra and multidisciplinary correlations in the context of the complexity of the field of biodiversity study; Using the generalised, linear (mixed)/additive models for revealing relationships between bio-ecological variables Employing different methods of multivariate analyses for the classification and ordination of ecological communities on the basis of their biological traits and/or environmental variables

8. Content

8.1 Lectures	Teaching methods	Comments
Introduction in phylogeography: concepts, methods,	Presentation and discussions	
discipline development and the main historical stages that		
marked this field		
Quaternary climate variations and their implications for	Presentation and discussions	
the current distribution of biomes; The concept of glacial		
refugia		
Molecular techniques used in phylogeographic studies	Presentation and discussions	
Basics of population genetics. Genetic diversity:	Presentation and discussions	
interpretations of its spatial distribution		
Phytohistorical considerations: Quaternary glaciations and	Presentation and discussions	
phylogeography of plant species in Romania		
Phylogeographic patterns of Carpathian animal species	Presentation and discussions	
implications for conservation		
Generalised linear (mixed) models	Presentation and discussions	
Generalised additive models	Presentation and discussions	
Classification and regression trees	Presentation and discussions	
Non-hierarchical cluster analysis	Presentation and discussions	
Redundancy analysis based on ecological distances	Presentation and discussions	
Non-metric multi-dimensional scaling	Presentation and discussions	
8.2 Seminars / laboratory classes	Teaching methods	Comments
Journal Club exercises, using representative articles of	Case studies and exercises	
phylogeography		
Spatio-temporal information (geographical, historical) on	Case studies and exercises	
macroclimatic variations and their interpretation; analysis		
of the concept of glacial refugia and its importance for		
various groups of organisms		
Notions of methods used in phylogeography: genetic	Case studies and exercises	
markers (mitochondrial DNA in animals, chloroplastic		
DNA, mitochondrial DNA in plants, nuclear DNA,		
perspectives)		
Analysis and interpretation of various patterns of	Case studies and exercises	
intraspecific diversity: identification of glacial refugia and		
postglacial colonization routes		
Analysis and interpretation of various current patterns of	Case studies and exercises	
intraspecific diversity for dominant and key species of		
Romania's major ecosystems (I): the plant world		
Analysis and interpretation of various current patterns of	Case studies and exercises	
intraspecific diversity for dominant and key species of		
Romania's major ecosystems (II): the animal world		
Performing generalised linear (mixed) models with real	Case studies and exercises	
data		
Performing generalised additive models with real data	Case studies and exercises	
Performing classification and regression trees with real	Case studies and exercises	
data	Constall 1	
Performing non-hierarchical cluster analyses with real	Case studies and exercises	
data Defendence the sector decrease and sector mid-	Constall 1	
Performing the redundancy analysis with real data	Case studies and exercises	
Performing the non-metric multi-dimensional scaling with	Case studies and exercises	
real data	1	
Bibliography:		

- Avise JC (2000). Phylogeography: the history and formation of species. Harvard University Press: Cambridge, Massachusetts, London.
- Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE *et al* (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. *Annu Rev Ecol Syst* **18:** 489-522.
- Bhagwat SA, Willis KJ (2008). Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr 35: 464-482.
- Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB et al (2010). Phylogeography's past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54: 291-301.
- Holderegger R, Thiel-Egenter C (2009). A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. J Biogeogr 36: 476-480.
- Hurdu BI, Escalante T, Puscas M, Novikoff A, Bartha L, Zimmermann NE (2016). Exploring the different facets of plant endemism in the South-Eastern Carpathians: a manifold approach for the determination of biotic elements, centres and areas of endemism. Biol J Linn Soc 119: 649-672.
- Ozenda P (1985). La Végétation de la Chaîne Alpine dans l'Espace Montagnard Européen. Masson: Paris.
- Puşcaş M, Taberlet P, Choler P (2008). No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Diversity and Distributions 14: 852-861.
- Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005). Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14: 3547-3555.
- Taberlet P (1998). Biodiversity at the intraspecific level: the comparative phylogeographic approach. Journal of Biotechnology 64: 91-100.
- Taberlet P, Cheddadi R (2002). Quaternary refugia and persistence of biodiversity. Science 297: 2009-2010.
- Taberlet P, Gielly L, Pautou G, Bouvet J (1991). Universal Primers for Amplification of 3 Noncoding Regions of Chloroplast DNA. *Plant Mol Biol* 17: 1105-1109.
- Tribsch A (2004). Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J Biogeogr 31: 747–760.
- Borcard D., Gillet F., Legendre P., 2018. Numerical Ecology with R. Springer, New York.
- Legendre P., Legendre L., 2012. Numerical Ecology. 3rd edition. Elsevier, Amsterdam.
- Crawley M.J., 2013. The R book. 2nd edition. John Wiley & Sons, Chichester.
- Wiley M., Wiley J.F., 2019. Advanced R Statistical Programming and Data Models: analysis, machine learning and visualization. Apress, New York.

9. Aligning the contents of the discipline with the expectations of the epistemic community representatives, professional associations and standard employers operating in the program field

- The content of the course aims at practical aspects related to the distribution and conservation of biodiversity in Romania and Europe, having an applicative character
- The course has a content similar to those of other European universities, with updated information, and is adapted to different skill levels of doctoral students
- The course content is focused on practical issues related to the numerical analysis and bioecological data modelling
- Along with the activities planned for the practical works, the doctoral students have the possibility to propose the adaptation of the given classes to the topics of their doctoral theses.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in
, , ,			the final grade
10.4 Lectures	Assessment of knowledge	Interview	50%
	1		
10.5 Seminars / laboratory	Assessment of the	Testing queries	50%
classes	acquired expertise and	Practical test on a PC	
	abilities		
10.6 Minimum performance standard			

- - Knowledge of 50% of the information contained in the course
 - Acquisition of 60% of the skills practiced during seminars

Date of issue	
10.04.2023	

Signature of the teacher responsible for lectures Conf. dr Mihai Pușcaș Conf. dr. Dan Gafta

Signature of the teacher responsible for seminars Conf. dr Mihai Pușcaș Conf. dr. Dan Gafta

Date of approval by the doctoral school council 12.04.2023

Signature of the doctoral school director Prof.dr. Pap Peter Laszlo