SYLLABUS

INTEGRATIVE BIOINFORMATICS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Department	Doctoral School of Integrative Biology
1.4 Field of study	Biology
1.5 Study cycle	Doctorate
1.6 Study programme / Qualification	PhD in Biology/ Biologist

2. Information regarding the discipline

1		Integrative Bioint	format	ics	
		Bioinformatică integrativă			
2.2 Course coordinator		Cojocaru Vlad, PhD Habil., CS I			
		Banciu Horia Leo	onard,	PhD Habil., Pro	f.
2.3 Seminar coordinator		Cojocaru Vlad, PhD Habil., CS I			
		Banciu Horia Leo	onard,	PhD Habil., Pro	f.
2.4. Year of study	1 2.5 Semester	2 2.6. Type of evaluation	E	2.7 Type of discipline	0
2.8. Code of the discipline					

E-exam; O-optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2
		Lectures		Laboratory classes	
3.4 Total hours in the curriculum	48	Out of which: 3.5	24	3.6 Seminars /	24
		Lectures		Laboratory classes	
Allocation of study time:					hrs
Study supported by textbooks, other course materials, recommended bibliography and personal				64	
student notes					
Additional learning activities in the li	brary,	on specialized online	platfo	rms and in the field	64
Preparation of seminars / laboratory of	lasses	, topics, papers, portfo	lios ar	nd essays	38
Tutoring					34
Examinations					4
Other activities: -					-
3.7 Individual study (total hours)		204			

3.8 Total hours per semester	252
3.9 Number of credits	10

4. Prerequisites (if necessary)

4.1. curriculum	Genetics, Biochemistry, Biophysics, Cell and molecular biology
4.2. competencies	Average computer skills

5. Conditions (if necessary)

5.1. for the course	Beamer, blackboard;
	Internet connection; Online meeting platform

5.2. for t	he seminar /lab	• Attendance of all practical/ seminar classes,
activities		Computers, specific development environment
6. Specific	c competencies acquired	
 Ability to use Linux and command line interfaces in life sciences; Development of the ability to generate, integrate, and analyse sequence data for life sciences; The ability to use bioinformatics databases, prediction, analysis and visualization tool model and predict protein structures and protein-nucleic acid complexes; The ability to use basic methods for molecular dynamics simulations The ability to use bioinformatics databases, prediction, analysis and visualization tool infer the diversity and functionality of microbial communities in natural ecosystems; Development of the capacity for analysis, synthesis and communication of specialized scientific information 		ability to generate, integrate, and analyse sequence data for life sciences; informatics databases, prediction, analysis and visualization tools to obtain structures and protein-nucleic acid complexes; ic methods for molecular dynamics simulations informatics databases, prediction, analysis and visualization tools to d functionality of microbial communities in natural ecosystems; exapacity for analysis, synthesis and communication of specialized
Transversal competencies	generation, processinCarrying out a research	ary information to complete a doctoral thesis in Biology field in which g and analysis of high-throughput data is central. ch project with all that implies the use of specific concepts, the selection dy methods, the interpretation of data, to the communication of results.

7.1 General objective of the discipline	• Gaining knowledge on the structure and dynamics of proteins, nucleic acids and other biological macromolecules, as well as diversity and ecological roles of microbial communities using databases and dedicated prediction, analysis and visualization methods.
7.2 Specific objective of the discipline	 Developing the capacity to analyze and interpret structures of biomolecules and to link the structures with biological function; Developing the skills to follow an inter-disciplinary approach to study biomolecules; Understanding the principles of generation and processing of high-throughput sequence data by NGS; Use of the main computational strategies for the prediction, modelling, analysis and visualization of community diversity and its ecological functions. Developing the skills to summarize and disseminate scientific literature in structural and environmental bioinformatics.

7. Objectives of the discipline (outcome of the acquired competencies)

8.	Content
----	---------

8. Content		
8.1 Course	Teaching methods	Remarks
	<i>Hybrid teaching: 40%</i>	
	onsite and 60% online (MS	
	Teams/Zoom) classes	
Structural Bioinformatics (part I)	Interactive exposure	10 hours
1. Short introduction to Linux	Presentation	
Structural Bioinformatics (part II)	Explanation	
2. Visualization and analysis of biomolecular structures (e.g.	Practical examples	
proteins, nucleic acids)	Case-study discussions	
Structural Bioinformatics (part III)		
3. Molecular modelling (structure predictions, structure		
modelling, homology modelling)		
Structural Bioinformatics (part IV)		

4. Basic introduction to molecular dynamics simulations		
Environmental Bioinformatics (part I)	Interactive exposure	14 hours
1. Phylogeny & probe design (ARB-SILVA)	Presentation	
1.a. Work with 16S rRNA gene sequences. Assemble full-	• Explanation	
length 16S sequences from multiple sequences. Primer	 Practical examples 	
removal. Chimera check.	 Case-study discussions 	
1.b. Introduction to ARB. Import fasta files to ARB.	• Case-study discussions	
Generate unique file names. Sequence alignment to SILVA		
database. Manual inspection and correction of alignment.		
1.c. Add aligned seqs to ARB tree. Calculate phylogenetic		
trees. Bootstrap values. Choice of root sequences. Tree		
design & export.		
1.d. Introduction to probe design tool in ARB. Design		
oligonucleotide probes. Criteria for probe selection and in		
silico testing.		
Environmental Bioinformatics (part II)		
2. Community fingerprinting by amplicon sequencing		
(Illumina reads)		
2.a. Work with raw reads (fastq files). Sequence processing:		
primer/adapter removal (cutadapt, BBMap, Illumina		
bcl2fastq). Pairing of processed sequences (BBMerge),		
quality filtering (USEARCH, QIIME2), removal of chimeras		
(USEARCH, QIIME2) and dereplication (USEARCH,		
QIIME2).		
2.b. OTU/ASV clustering of processed reads. Work with		
DADA2 R, SWARM, MetaAmp or QIIME2 pipelines.		
Taxonomic allocation of OTU/ASVs based on SilvaNGS		
pipeline. Work with the online SilvaNGS engine. Generate		
Krona plots.		
Environmental Bioinformatics (part III)		
3. Metagenomics		
3.a. Quality control of raw data. Adapter clipping. Merge		
unpaired reads into a single file. Trimmomatic, BBduk		
3.b. Metagenome assembly (Spades). Assembly evaluation		
(MetaQuast). Extraction of 16S from contigs (rnammer),		
chimeras detection (uchime). Gene prediction (prodigal).		
Blast with custom databases for search of specific		
genes/proteins.		
3.c. Binning (MetaBAT or MaxBin). Completeness and		
contamination of MAGs, establish criteria for selection		
(CheckM). Read mapping to MAGs to estimate read		
abundance of the MAGs (Bowtie, BBmap). Gene prediction		
(prodigal), annotation of predicted genes/enzymes (KEGG,		
Pfam, COG).		
3.d. Using CheckM and BUSCO, and GTDBTK for genome		
taxonomy, ANI and AAI for genome comparison.		
Bibliography		

Bibliography

- 1. Keith J.M., Bioinformatics. Vol. 1: Data, sequence analysis, and evolution. New York : Humana Press, 2017.. In: Bioinformatics, vol. Vol. 1
- 2. Keith J.M., Bioinformatics. Vol. 2: Structure, function, and applications. New York : Humana Press, 2017.. In: Bioinformatics, vol. Vol. 2,
- 3. Leach, A.R. Molecular modelling: principles and applications. Pearson education.2001.
- 4. Pevzner P., Bioinformatics for biologists. Cambridge ; New York : Cambridge University Press, 2013
- 5. Stryer L., Biochemistry. New York : W. H. Freeman and Company, 1995
- 6. Schlick T., Molecular modeling and simulation : an interdisciplinary guide. New York, Springer, 2010.

 Xiong J., Essential bioinformatics. New York : Cambridge University Press, 2006 References (1-2, 4-5, 7) are available in printed format at the libraries of the Faculty of Biology and Geology. Reference (3) is available upon request from the class tutor. Reference (6) is available in printed format at the library of the Faculty of Chemistry and Chemical Engineering.

format at the library of the Faculty of Chemistry and Chemical	Engineering.	
8.2 Seminar / laboratory	Teaching methods	Remarks
	<i>Hybrid teaching: 50%</i>	
	onsite and 50% online (MS	
	Teams/Zoom) classes	
Study cases and exercises in structural bioinformatics	Interactive explanations	
(Modeling of three-dimensional structures of	Explanation	
biomacromolecules; Comparison of 3D structures; Modelling	Conversation	
and visualization of molecular dynamics; Data validation,	Case study	
integration and comparison)		
Study cases and exercises in phylogeny and probe design,		
community-level fingerprinting by amplicon sequencing and		
metagenomics		
Presentation of a relevant scientific article		
Evaluation of a short individual project on structural or	Evaluation	
environmental bioinformatics		
Bibliography		
Collection of research articles available in digital format at the	libraries of the Faculty of Biolo	ogy and

Geology and `Lucian Blaga` Central University Library, Cluj-Napoca.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course promotes the gaining of theoretical knowledge and practical skills required for teamwork in the field of research and development in academic and research entities, but also in R&D units in private companies;
- The course is present in the curriculum of similar specializations at USA and European Universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.1 Course	Knowledge of concepts and	Written exam	40%
	methods from the topics of the	(combined test)	
	course		
10.2 Seminar/lab activities	Evaluation of	Oral colloquium	
	-presentation of a research		20%
	article;		
	- individual project on		40%
	structural bioinformatics topic		
10.3Minimum performance	standards		
Each student should obtain	minimum 5 at the written exam ar	nd oral colloquium. In or	rder to obtain the

Each student should obtain minimum 5 at the written exam and oral colloquium. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts described during the course and practicum classes.

Date	Signature of course coordinator	Signature of seminar coordinator
19.09.2022	COJOCARUVlad, PhD Habil., CS I	COJOCARU Vlad, PhD Habil., CS I

BANCIU Horia, PhD Habil., Prof.

BANCIU Horia, PhD Habil., Prof.

Date of approval **20.09.2022**

Signature of the head of department **Prof. dr.** *Habil.* **PAP Peter Laszlo**