COURSE SYLLABUS OXIDATIVE STRESS IN BIOLOGICAL AND BIOMEDICAL RESEARCH

1. Data about the program

1.1 Higher education institution	Babeș-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Doctoral school	Integrative Biology
1.4 Field of study	Biology
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training / Ph.D. in Biology

2. Course data

2.1 Name of discipl	ine	Oxidative	Oxidative stress in biological and biomedical research (BRD1110)				
2.2 Teacher responsible for lectures Profess			rofessor dr. Manuela Ba	ınciu			
2.3 Teacher responsible for seminars I			P	rofessor dr. Manuela Ba	nciu		
2.4 Year of study	1	2.5 Semester	Semester 2 2.6. Type of		Е	2.7 Course framework	O
-	evaluation						

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2
_		Lectures		Laboratory classes	
3.4 Total hours in the curriculum	48	Out of which: 3.5	24	3.6 Seminars /	24
		Lectures		Laboratory classes	
Allocation of study time:					Но
					urs
Study supported by textbooks, other course materials, recommended bibliography and personal student notes					
Additional learning activities in the library, on specialized online platforms and in the field					
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays					38
Tutoring					34
Examinations					
Other activities: -					

3.7 Individual study (total hours)	204
3.8 Total hours per semester	252
3.9 Number of credits	10

4. Preconditions (where applicable)

10 1 1 0 0 0 11 0 11 0 11 0 11 0 11 0	
4.1 Curriculum	Biochemistry, Cell and Molecular Biology, Genetics
4.2 Competences	 Skills in using laboratory equipment · Interpretation of biochemical data

5. Conditions (where applicable)

5.1 Conducting lectures	Online communication/ meeting platform (MS Teams,)	
	Audio-video logistics, whiteboard ·	
5.2 Conducting seminars /	 Admission at final evaluation is conditioned by at least 80% 	
laboratory classes	attendances at the scheduled laboratory classes.	

6. Specific competences acquired

Professional competences	 Acquiring the conceptual and analytical capacity to approach the molecular study of the induction of oxidative stress. Developing the capacities of Ph.D. students to organize and carry out practical activities as future researchers in laboratories of biotechnology, biochemistry, cellular and molecular biology, molecular ecology. Development of skills for writing and interpreting scientific papers with a modern biological subject
Transversal competences	 Acquiring advanced biological knowledge necessary for an interdisciplinary STEM approach to the topic of the doctoral research; Use of theoretical notions in solving practical problems.

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	Aquiring theoretical and practical information on the mechanism of induction of cellular oxidative stress
7.2 Specific objectives	 Development of the PhD students capacity to explore the molecular mechanisms underlying the reactivity of living organisms to different physiological and pathological conditions as well as various environmental conditions. Learning the methodological principles underlying molecular techniques for investigating cellular oxidative stress.

8. Content

8.1 Lectures	Teaching methods	Comments
1-2. Energy metabolism-metabolic pathways	Debate, interactive	4 hours
involved in induction of cellular oxidative stress	presentation,	
3-4. Cell signalling pathways involved in oxidative	problem-based	4 hours
stress	learning.	
5-7. Tumor cell metabolism reprogramming		6 hours
8-9. Involvement of oxidative stress in aging and		4 hours
degenerative diseases		
10-12. Adaptive responses of different organisms to		6 hours
oxidative stress induced by environmental factors		
(bioindicators to environmental pollution, adaptation		
mechanisms).		
Bibliography: Scientific articles from public databases	· •	ngerLink ,etc.) accessed via
"LUCIAN BLAGA" Central University Library of Clu	ıj-Napoca, Anelis	
8.2 Seminars / laboratory classes	Teaching methods	Comments
1. Laboratory organization and labor protection	Presentation,	2 hours
instructions.	discussion (online	
	using MS teams	
	platform)	
2. Determination of oxidative stress markers	Practical work-onsite	20 hours
using biochemical (HPLC,	Problem-solving and	
spectrophotometry), immunochemical	discussion	

(western blotting, immunohistochemistry)			
and molecular biology (qRT-PCR) methods.			
3. Examination - Presentation of a project based	Discussion on a	2 hours	
on critical thinking, with a topic related to the	specific topic related		
involvement of cellular oxidative stress in the	to the research topic		
research topic of a doctoral thesis	of a doctoral thesis		
Bibliography: Scientific articles from public databases (PubMed Central, SpringerLink, etc.) accessed via			
LUCIAN BLAGA" Central University Library of Clu	ii-Nanoca Anelis		

9. Aligning the contents of the discipline with the expectations of the epistemic community representatives, professional associations and standard employers operating in the program field

- The course has a similar content to courses from other European universities and observe the level of training of doctoral students
- The course is essential for the development of working skills in applied research laboratories in biological and medical fields.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in		
			the final grade		
10.4 Lectures	Assessment of knowledge	Oral exam	50%		
10.5 Seminars / laboratory	Activity during seminars	Oral exam	50%		
classes	Assessment of knowledge				
10.6 Minimum performance standard					
Knowledge of 50% of the information content of the course					
Knowledge of 50% of the information content of the laboratory work.					

Date of issue	Signature of the teacher	Signature of the teacher
	responsible for lectures	responsible for seminars
10.09.2022	•	
	Prof dr Manuela Banciu	Prof dr Manuela Banciu

Date of approval by the doctoral school council

Signature of the Doctoral School Director

15.09.2022

Prof. Univ. Dr. PAP Péter-Laszló