COURSE SYLLABUS

1. Data about the program

i zata azort tit program	
1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Doctoral school	Integrative Biology
1.4 Field of study	BIOLOGY
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training / PhD in Biology

2. Course data

2.1 Name of discip	line	Environn	Environmental molecular biology				
2.2 Teacher responsible for lectures Prof. Dr. Horia Banciu							
2.3 Teacher responsible for seminars			Pre	of. Dr. Horia Banciu			
2.4 Year of study	1	2.5 Semester	1 2.6. Type of		С	2.7 Course framework	0
				evaluation			

C – colloquium; O – optional

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2	
_		Lectures		Laboratory classes		
3.4 Total hours in the curriculum	48	Out of which: 3.5	24	3.6 Seminars /	24	
		Lectures		Laboratory classes		
Allocation of study time:					hrs	
Study supported by textbooks, other co	ourse	materials, recommend	ed bib	liography and personal	30	
student notes						
Additional learning activities in the library, on specialized online platforms and in the field						
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays						
Tutoring						
Examinations						
Other activities: -						
3.7 Individual study (total hours)		98				
3.8 Total hours per semester 146						

20

4. Preconditions (where applicable)

3.9 Number of credits

4.1 Curriculum	•	Not applicable
4.2 Competences	•	Skills in using laboratory equipment
	•	Interpretation of physical, chemical and biological data

5. Conditions (where applicable)

5.1 Conducting lectures	Audio-video logistics, whiteboard
5.2 Conducting seminars / laboratory classes	• Admission at colloquium evaluation is conditioned by at least 50% attendances at the scheduled seminars.

6. Specific competences acquired

or speem						
	• Gaining conceptual and analytical capacity to approach the molecular study of biodiversity.					
onal nces	• Obtaining practical skills to use analysis equipment and biological databases for integrated biodiversity investigation;					
Professional competences	• Developing the capacities of doctoral graduates to organize and carry out complex activities in biotechnology, biochemistry, cellular and molecular biology, genetics research laboratories					
	• Development of communication skills for writing scientific papers with interdisciplinary and biological subjects.					
rsal nces	• Acquiring advanced biological knowledge essential for an interdisciplinary approach to the topic covered in the doctoral thesis;					
Transversal competences	• Using theoretical concepts in solving practical problems.					

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	•	Gaining advanced knowledge of qualitative and quantitative analysis of the diversity of living prokaryotic and eukaryotic systems
7.2 Specific objectives	•	Developing the capacity of PhD students to explore biodiversity through molecular means. Learning the methodological principles underlying molecular techniques for investigating the diversity of prokaryotes and eukaryotes.

8. Content

8.1 Lectures	Teaching methods	Comments
Introduction to environmental molecular biology:	Presentation,	2 hours
definition, purpose, importance and directions of	discussion, case	
application	studies, exercises	
The evolution of life, organization and diversity of		2 hours
living systems.		
The role of biodiversity in the biogeochemical cycles		2 hours
of the major elements.		
Principles of molecular taxonomy. The use of DNA		2 hours
analysis in the molecular identification of species.		
Principles of genomic analysis; genomic projects.		4 hours
Complete genome sequencing strategies; types of		
sequencing strategies		
Functional and proteomic genomics techniques in		4 hours
investigating the diversity and functionality of		
organisms.		
Analysis of biodiversity and functionality of		8 hours
ecosystems through metagenomics and		
metaproteomics. The role of biological databases and		
bioinformatics tools in the molecular analysis of		
biodiversity.		
		Total: 24 hours
Bibliography:		

Bouchez, T., Blieux, A. L., Dequiedt, S., Domaizon, I microbiology methods for environmental diagnosis. E Garte, S. J. (1993). Molecular environmental Biology. Craig N.L., Cohen-Fix O., Green R.(2010). Molecular University Press, Oxford, UK. Liu, W T.,Jansson, J. K. (2010). Environmental Mol- Urbana-Champaign, USA. Martin, C.C. (2008), Environmental Genomics. Huma Watson J.D., Baker T.A., Bell S.P. (2008). Molecular Press.	nviron Chem Lett, 14 (4 CRC Press, Boca Raton biology: principles of g ecular Microbiology. Ca na Press, Totowa, NJ, U), 423-441. a, USA. enome function. Oxford ister Academic Press, SA.			
8.2 Seminars / laboratory classes	Teaching methods	Comments			
Laboratory organization and labor protection instructions.	Group seminar	1 hour			
Practical work in modular regime: direct and fluorescence optical microscopy	Practical work. Problem-solving and discussion	5 hours			
Total genomic DNA extraction from bacterial isolates, DNA quantification, PCR amplification of the 16S rRNA gene, gel separation of amplicons.	Practical work. Problem-solving and discussion	6 hours			
Total environmental DNA extraction, quantitative and qualitative assessment of extracted envDNA.	Practical work. Problem-solving and discussion	6 hours			
Use of sequence data for molecular identification of microbial species. Presentation of metagenomic analysis strategies and tools for characterizing the molecular diversity of an environmental sample.	Practical work. Problem-solving, data integration, data modeling and discussion	4 hours			
Colloquium for the evaluation of the elaborated reports and of the assimilated knowledge during the laboratory sessionsFrontal evaluation activity based on heuristic conversation2 hours					
Total: 24 hours					
Bibliography: (1) Scientific articles from public databases (PubMed	Central Google Academ	nic SpringerLink etc.)			

Scientific articles from public databases (PubMed Central, Google Academic, SpringerLink, etc.) accessible through `Lucian Blaga` Central University Library of Cluj-Napoca and ANELIS
Biological databases (eg, Entrez-GenBank) accessible through the branch libraries of the `Lucian Blaga` Central University Library of Cluj-Napoca.

9. Aligning the contents of the discipline with the expectations of the epistemic community representatives, professional associations and standard employers operating in the program field

- The course has a similar content to courses from other European universities and considers the level of training of doctoral students
- The course is essential for the development of working skills in interdisciplinary and applied (biotechnology) research laboratories.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in
			the final grade
10.4 Lectures	Assessment of knowledge	Colloquium (oral)	50%
	c .		
10.5 Seminars / laboratory	Skills in understanding	Colloquium (oral)	30%
classes	and reviewing the latest		
	scientific information		

	Skills in presenting scientific information	Evaluation of presentation	20%			
10.6 Minimum performance standard						
Knowledge of 50% of the information content of the course						
• Knowledge of 50% of the information content of the laboratory work.						

Date of issue 17.09.2018

Signature of the teacher responsible for lectures Prof. Horia Banciu

HLBann

Date of approval by the doctoral school council 18.09.2018

Signature of the doctoral school director Prof. Marcel Pârvu

Signature of the teacher

responsible for seminars

Prof. Horia Banciu

HLBann

10 Fire