COURSE SYLLABUS

1. Data about the program

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Doctoral school	The doctoral school of Theoretical and Applied Geology
1.4 Field of study	Geology
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training / Doctor of Geology

2. Course data

2.1 Name of discipl	ine	Environm	Environmental Paleoclimatology				
2.2 Teacher responsible for lectures Prof. Dr. Vlad CODREA							
2.3 Teacher responsible for seminars			Р	rof. Dr. Vlad CODREA			
2.4 Year of study 1 2.5 Semester 2		2	2.6. Type of	Е	2.7 Course framework	Opt	
				evaluation			

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2	
-		Lectures		Laboratory classes		
3.4 Total hours in the curriculum	48	Out of which: 3.5	24	3.6 Seminars /	24	
		Lectures		Laboratory classes		
Allocation of study time:						
Study supported by textbooks, other course materials, recommended bibliography and personal						
student notes						
Additional learning activities in the library, on specialized online platforms and in the field 25						
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays 10						
Tutoring 2						
Examinations 2						
Other activities: -						

3.7 Individual study (total hours)	67
3.8 Total hours per semester	117
3.9 Number of credits	10

4. Preconditions (where applicable)

4.1 Curriculum	•	Not the case
4.2 Competences	•	Organizing the bibliographic references

5. Conditions (where applicable)

5.1 Conducting lectures	Logistical video support
5.2 Conducting seminars /	 Minimum 80% participation at laboratory work is a condition for
laboratory classes	participation at exams

6. Specific competences acquired

Professional competences	 Recognizing and understanding the climatic events from the geologic history of the Earth, the mechanisms which generated them, the amplitudes of the climatic variations, the influences over the biosphere, the possibility of a repeat of similar scenarios and the potential effects over the human communities.
Transversal competences	 Developing the capacity to use the notions regarding paleoclimatic evolution Utilizing the theoretical notions to resolve practical problems

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	 Recognizing and understanding the climatic events from the geologic history of the Earth, the mechanisms which generated them, the amplitudes of the climatic variations, the influences over the biosphere, the possibility of a repeat of similar scenarios and the potential effects over the human communities.
7.2 Specific objectives	The study of some climatic events which had repercussions over the evolution of the fauna and flora during the geologic time.

8. Content

8.1 Lectures	Tanahina mathada	Comments
	Teaching methods	Comments
Introduction. The sources of the paleoclimatic data.		
The levels of the paleoclimatic data. The levels of the		
paleoclimatic studies. Shaping of the paleoclimatic		
research. Observations and models. Dimensions of the		
geologic times.		
Defining the paleoclimatic principles. The causes for	Presentation,	
climate change. The climate and the nature of the	discussion, case	
climatic variations. The climatic system. The balance	studies, exercises	
of atmosphere vs terrestrial substrate. The variations		
of the Earth's orbital parameters.		
Climatic proxies. Dating methods. Radio-isotopic methods:		
radiocarbon dating, the K-Ar method, dating based on		
uranium isotopes, the luminescence method, the fission		
track method.		
Paleomagnetism Dating based on chemical changes.		
Dating based on biological elements.		
Dating based on ice cores.		
The paleoclimatic message in marine sediments and corals.		
Paleoclimatic proof originating from non-marine deposits:		
loess, lacustrine sediments, speleothemes. The biological		
principles of paleoclimatology.		
Proof deriving from paleovegetation: distribution and		

macrofossils. Insects.
Millennial climatic changes.
Interanual climatic changes in tropical areas.
Paleoclimatic events of reference in the geologic time
scale: Thermal Maximum at the end of the Paleocene.
The K/T boundary and the associated paleoclimatic
aspects.
The Eocene/Oligocene boundary and the associated
paleoclimatic events.
The climatic optimum from the Middle Miocene.

Bibliography:

Bradley R. Paleoclimatology. Reconstructing Climates of the Quaternary. Second edition. Elsevier, International geophysics series, 1999.

Cronin Th. M. Principles of Paleoclimatology. Columbia University Press. 1999

Prothero D. After the Dinosaurs: The Age of Mammals. Indiana University Press, 2006

Bradley R.: Paleoclimatology, 3rd Edition, Academic Press, 2014

Gilles Ramstein, Amaëlle Landais, Nathaelle Bouttes, Pierre Sepulchre, Aline Govin, 2021:

Paleoclimatology. Springer Verlag, 478 p.

https://opengeology.org/historicalgeology/paleoclimatology-earth-systems-change-through-time/

8.2 Seminars / laboratory classes	Teaching methods	Comments
Case studies prepared with the doctoral students,		
based on their individual doctoral research topics		
Variations of the Earth's orbital parameters, climate		
change control factor.		
Dating methods to calibrate paleoclimatic events.		
Biological evidence for the paleoclimatic events.		
Ice cores		
Paleoclimatic changes in the Late Quaternary, based		
on loess deposits: case study.		
Paleoclimatic events of reference in the geologic		
time scale: Thermal Maximum at the end of the		
Paleocene.	Presentation,	
The K/T boundary and the associated paleoclimatic	discussion, exercises	
aspects.		
The Eocene/Oligocene boundary and the associated		
paleoclimatic events.		
The climatic optimum from the Middle Miocene.		
Paleoclimatic degradations which occurred in		
Europe, during the Pliocene.		
The Messinian crisis and the climatic context.		
The climate of the last glacial and the associated		
anthropogenic events (I)		
The climate of the last glacial and the associated		
anthropogenic events (II)		
Diblic combra		

Bibliography:

Bradley R. Paleoclimatology. Reconstructing Climates of the Quaternary. Second edition. Elsevier, International geophysics series, 1999.

Cronin Th. M. Principles of Paleoclimatology. Columbia University Press. 1999

Prothero D. After the Dinosaurs: The Age of Mammals. Indiana University Press, 2006

Bradley R.: Paleoclimatology, 3rd Edition, Academic Press, 2014

Gilles Ramstein, Amaëlle Landais, Nathaelle Bouttes, Pierre Sepulchre, Aline Govin, 2021:

Paleoclimatology. Springer Verlag, 478 p.

https://opengeology.org/historicalgeology/paleoclimatology-earth-systems-change-through-time/

9. Aligning the contents of the discipline with the expectations of the epistemic community representatives, professional associations and standard employers operating in the program field

- The course has a contents similar to the courses of other European universities, it contains current information and it takes into account the different study levels.
- The contents of the course checks the practical and environmental aspects, which are tied to the paleoclimatic data.
- Through the unfolded activities, the students are obligated to and have the ability to provide solutions to certain problems and to propose ideas to better current situations.

10. Examination

101 Emailimetion					
Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in		
			the final grade		
10.4 Lectures	Assessment of knowledge	Written exam	70%		
	Assessment of knowledge	Ongoing tests			
10.5 Seminars / laboratory	Activity during seminars	Discussions, answers to			
classes		questions			
	Assessment of knowledge	Written exam	30%		
10.6 Minimum performance standard					

10.6 Minimum performance standard

- Knowing 50% of the information contained within the course.
- Knowing 60% of the information learned in the lab.

Date of issue	Signature of the teacher	Signature of the teacher
	responsible for lectures	responsible for seminars
08.05.2024		_

Date of approval by the doctoral school council 15.05.2024

Signature of the doctoral school director