COURSE SHEET

1. Data about the program

1.1 Higher education institution	Babeș-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Doctoral school	Geology
1.4 Field of study	Geology
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training / Doctor of Geology

2. Course data

2.1 Name of discipline	Isotope Ge	Isotope Geology		
2.2 Teacher responsible	e for lectures	Prof. dr. Bogdan P. Onac		
2.3 Teacher responsible	e for seminars	Prof. dr. Bogdan P. Onac		
2.4 Year of study 1	2.5 Semester	2.6. Type of evaluation E	E 2.7 Course framework	Ob

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	3.2 Out of wh	ich: Lectures	2	3.3 Seminars / Laboratory classes	2
3.4 Total hours in the curriculum	48	3.5 Out of wh	nich: Lectures	24	3.6 Seminars / Laboratory classes	24
Allocation of study time:						hours
Study supported by textbooks, oth	er cou	urse materials,	recommended	l bibli	ography and personal	30
student notes						
Additional learning activities in the library, on specialized online platforms and in the field					20	
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays					15	
Tutoring					2	
Examinations					2	
Other activities:				-		
3.7 Individual study (total hours) 65				•		
3.8 Total hours per semester 117						
• · · · · · · · · · · · · · · · · · · ·						

10

4. Preconditions (where applicable)

3.9 Number of credits

4.1 Curriculum	• Geochemistr	ry, Mineralogy, Chemistry, Physics
120	• Sample prep analysis tool	aration and familiarity with the main course-specific s
4.2 Competences	• Preparation	of literature review
	• Generation of	of complex plots

5. Conditions (where applicable)

5.1 Conducting lectures	 Printed and digital textbooks Class room with videoprojector, WIFI, and software Personal laptop
5.2 Conducting seminars / laboratory classes	 Use of inductive coupled plasma-mass spectrometer Calculation of isotopic fractionation and radioactive ages Attending at least 80% of the laboratory works is mandatory in order to enter in the practical and theoretical exam

6. Specific competences acquired

Professional competences	 Recognition of processes that cause fractionation of radioactive isotopes Knowledge of major isotope pairs (U/Pb, Nd/Sm, K/Ar., etc.) Learning analytical methods specific to radioactive isotopes Use of radioactive age calculation software (IsoplotR, UThwigl, etc.)
Transversal competences	 Developing the ability to work in a team Formulate research hypotheses and test them Multi- and interdisciplinary interpretation of isotopic results

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	 Understanding isotopic pairs and processes that affect their fractionation Plot and interpret isotopic results Understanding radiometric dating methods Applications of radioactive isotopes in various geological enviros
7.2 Specific objectives	 Understanding the factors that change the isotopic composition Representation of global and local weather lines Generating 2D and 3D isochrons, as well as ²³⁴U age models

8. Content

8.1 Lectures	Teaching methods	Comments
1. Introduction		
2. Natural radioactivity		
3. Collection of samples for isotopic analysis		
4. Chemical methods specific to isotopic analyses		
5. Analytical tools		
6. Dating methods - cosmogenic radionuclides		
7. Uranium series dating		
8. Dating based on radiation effects on minerals		
(thermoluminescence, OSL, ESR)	Presentation,	
9. Dating based on isotopic couples (K / Ar, Ar / Ar,	discussion, case	
Rb / Sr, Sm / Nd, U / Pb, etc.)	studies, exercises	
10. Isotopes stable in nature. Generalities, standards		
and isotopic fractionation (H, C, N, O, S)		
11. Hydrogen and oxygen isotopes in the atmosphere		
and hydrosphere		
12. Isotopes of carbon and oxygen in inorganic and		
biogenic carbonates	-	
13. Use of nitrogen and sulfur isotopes		
14. Chemical dating methods (amino acids, obsidian)		
Bibliography:		
1. Onac, B.P. 2004. Clepsidrele geologie. Introducere î	n geocronologia izotopi	că. Ed. Presa Univ. Clujeană,

1. Onac, B.P. 2004. *Clepsidrele geologie. Introducere în geocronologia izotopică*. Ed. Presa Univ. Clujeană, Cluj-Napoca, 176 p.

2. Văsaru, V., Cosma, C. 1998. *Geocronologie nucleară*. *Metode de datare prin fenomene nucleare natur*ale. Ed. Dacia, Cluj-Napoca, 349 p.

3. White, W.M. 2015. Isotopic geochemistry. Wiley, 478 p. (digital)

8.2 Seminars / laboratory classes	Teaching methods	Comments
1-4. Calculations of isotopic fractionation and		
precipitation temperature		
5-6. Sample collection, preparation, and standards	Dresentation	
7-9. Operation and use of TIMS / (MC) ICP-MS	Presentation, discussion	Exercises and homework
10-12. Absolute age determinations (including	discussion	
isochrone method)		
12-14 Plot and interpretation of results		
Bibliography		

Bibliography:

1. Onac, B.P. 2004. *Clepsidrele geologie. Introducere în geocronologia izotopică*. Ed. Presa Univ. Clujeană, Cluj-Napoca, 176 p.

2. Văsaru, V., Cosma, C. 1998. *Geocronologie nucleară*. *Metode de datare prin fenomene nucleare natur*ale. Ed. Dacia, Cluj-Napoca, 349 p.

3. White, W.M. 2015. Isotopic geochemistry. Wiley, 478 p. (digital)

9. Aligning the contents of the discipline with the expectations of the epistemic community representatives, professional associations and standard employers operating in the program field

•	The content of the discipline is similar to those taught at other universities in the country and
	abroad and provides applicable knowledge in the field of Earth Sciences.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final grade	
10.4 Lectures	Assessment of knowledge	Written exam	40%	
10.4 Lectures	Assessment of knowledge	Quizzes	10%	
10.5 Seminars / laboratory	Activity during seminars	Discussions, answers to questions, assignments	20%	
classes	Assessment of knowledge	Written exam / Reports (3)	30%	
10.6 Minimum performance standard				
Passing the theoretical and practical exam				
• Knowledge and understanding of at least 50% of the theoretical information of the course				

Date of issue	Signature of the teacher responsible for lectures	Signature of the teacher responsible for seminars
23.02.23		

Date of approval by the doctoral school council 24.02.23

Signature of the doctoral school director