COURSE SYLLABUS

1. Data about the program

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Biology and Geology
1.3 Doctoral school	The doctoral school of Theoretical and Applied Geology
1.4 Field of study	Geology
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training / Doctor of Geology

2. Course data

2.1 Name of discip	line	Environm	Environmental Paleoclimatology				
2.2 Teacher responsible for lectures		Pi	of. Dr. Vlad CODREA				
2.3 Teacher responsible for seminars		Pi	of. Dr. Vlad CODREA				
2.4 Year of study	1	2.5 Semester	2	2.6. Type of	Е	2.7 Course framework	Opt
				evaluation			

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	4	Out of which: 3.2	2	3.3 Seminars /	2
		Lectures		Laboratory classes	
3.4 Total hours in the curriculum	48	Out of which: 3.5	24	3.6 Seminars /	24
		Lectures		Laboratory classes	
Allocation of study time:					
Study supported by textbooks, other co	ourse	materials, recommend	ed bib	liography and personal	30
student notes					
Additional learning activities in the library, on specialized online platforms and in the field					25
Preparation of seminars / laboratory classes, topics, papers, portfolios and essays					10
Tutoring					2
Examinations			2		
Other activities: -					
3.7 Individual study (total hours)		67			
3.8 Total hours per semester		117			

10

4. Preconditions (where applicable)

3.9 Number of credits

\ II	/
4.1 Curriculum	Not the case
4.2 Competences	Organizing the bibliographic references

5. Conditions (where applicable)

5.1 Conducting lectures	Logistical video support
5.2 Conducting seminars /	Minimum 80% participation at laboratory work is a condition for
laboratory classes	participation at exams

6. Specific competences acquired

Professional competences	• Recognizing and understanding the climatic events from the geologic history of the Earth, the mechanisms which generated them, the amplitudes of the climatic variations, the influences over the biosphere, the possibility of a repeat of similar scenarios and the potential effects over the human communities.
Transversal competences	 Developing the capacity to use the notions regarding paleoclimatic evolution Utilizing the theoretical notions to resolve practical problems

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the course	• Recognizing and understanding the climatic events from the geologic history of the Earth, the mechanisms which generated them, the amplitudes of the climatic variations, the influences over the biosphere, the possibility of a repeat of similar scenarios and the potential effects over the human communities.
7.2 Specific objectives	• The study of some climatic events which had repercussions over the evolution of the fauna and flora during the geologic time.

8. Content

8.1 Lectures	Teaching methods	Comments
Introduction. The sources of the paleoclimatic data.		
The levels of the paleoclimatic data. The levels of the		
paleoclimatic studies. Shaping of the paleoclimatic		
research. Observations and models. Dimensions of the		
geologic times.		
Defining the paleoclimatic principles. The causes for	Presentation,	
climate change. The climate and the nature of the	discussion, case	
climatic variations. The climatic system. The balance	studies, exercises	
of atmosphere vs terrestrial substrate. The variations		
of the Earth's orbital parameters.		
Climatic proxies. Dating methods. Radio-isotopic methods:		
radiocarbon dating, the K-Ar method, dating based on		
uranium isotopes, the luminescence method, the fission		
track method.		
Paleomagnetism Dating based on chemical changes.		
Dating based on biological elements.		
Dating based on ice cores.		
The paleoclimatic message in marine sediments and corals.		
Paleoclimatic proof originating from non-marine deposits:		
loess, lacustrine sediments, speleothemes. The biological		
principles of paleoclimatology.		
Proof deriving from paleovegetation: distribution and		

macrofossils. Insects.			
Millennial climatic changes.			
Interanual climatic changes in tropical areas.	-		
Paleoclimatic events of reference in the geologic time	-		
scale: Thermal Maximum at the end of the Paleocene.			
The K/T boundary and the associated paleoclimatic	-		
aspects.			
The Eocene/Oligocene boundary and the associated	-		
paleoclimatic events.			
The climatic optimum from the Middle Miocene.	_		
Bibliography:			
Bradley R. Paleoclimatology. Reconstructing Climates	of the Queternery Secon	d adition Elegation	
International geophysics series, 1999.	s of the Quaternary. Secon	a eanton. Eisevier,	
Cronin Th. M. Principles of Paleoclimatology. Columb	in University Press 1000		
Prothero D. After the Dinosaurs: The Age of Mammal	•		
e	5	8, 2000	
Bradley R.: Paleoclimatology, 3rd Edition, Academic L		ovin 2021.	
Gilles Ramstein, Amaëlle Landais, Nathaelle Bouttes,	Pierre Sepuichre, Anne G	oviii, 2021 :	
Paleoclimatology. Springer Verlag, 478 p.		a through times (
https://opengeology.org/historicalgeology/paleoclimate	blogy-earth-systems-chang	ge-through-time/	
8.2 Saminara / Jahoratory alaggag	Teaching methods	Commonto	
8.2 Seminars / laboratory classes	Teaching methods	Comments	
Case studies prepared with the doctoral students,			
based on their individual doctoral research topics			
Variations of the Earth's orbital parameters, climate			
change control factor.			
Dating methods to calibrate paleoclimatic events.			
Biological evidence for the paleoclimatic events.			
Ice cores			
Paleoclimatic changes in the Late Quaternary, based			
on loess deposits: case study.			
Paleoclimatic events of reference in the geologic			
time scale: Thermal Maximum at the end of the			
Paleocene. Presentation,			
The K/T boundary and the associated paleoclimatic discussion, exercises			
aspects.			
The Eocene/Oligocene boundary and the associated			
paleoclimatic events.			
The climatic optimum from the Middle Miocene.	*		
Paleoclimatic degradations which occurred in	<u> </u>		
Europe, during the Pliocene.			
The Messinian crisis and the climatic context.			
The climate of the last glacial and the associated			
anthropogenic events (I)			
The climate of the last glacial and the associated			
anthropogenic events (II)			
Bibliography:			
Bradley R. Paleoclimatology. Reconstructing Climates of the Quaternary. Second edition. Elsevier,			
International geophysics series, 1999.			
Cronin Th. M. Principles of Paleoclimatology. Columb	bia University Press 1999		
Prothero D. After the Dinosaurs: The Age of Mammal	•		
Bradley R.: Paleoclimatology, 3rd Edition, Academic	-		
Gilles Ramstein, Amaëlle Landais, Nathaelle Bouttes,		ovin. 2021 :	
Paleoclimatology. Springer Verlag, 478 p.	- terre separente, runie o	,	
r moormatorogy. springer vering, 470 p.			

9. Aligning the contents of the discipline with the expectations of the epistemic community representatives, professional associations and standard employers operating in the program field

- The course has a contents similar to the courses of other European universities, it contains current information and it takes into account the different study levels.
- The contents of the course checks the practical and environmental aspects, which are tied to the paleoclimatic data.
- Through the unfolded activities, the students are obligated to and have the ability to provide solutions to certain problems and to propose ideas to better current situations.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in
			the final grade
10.4 Lectures	Assessment of knowledge	Written exam	70%
	Assessment of knowledge	Ongoing tests	
10.5 Seminars / laboratory	Activity during seminars	Discussions, answers to	
classes		questions	
	Assessment of knowledge	Written exam	30%
10.6 Minimum performance	e standard		
• Knowing 50% of the information contained within the course.			

• Knowing 60% of the information learned in the lab.

Date of issue	Signature of the teacher
	responsible for lectures
23.02.2022	-

Signature of the teacher responsible for seminars

Date of approval by the doctoral school council

Signature of the doctoral school director

25.02.2022